I am new to Python, and was trying to run a basic web scraper. My code looks like this
import requests
import pandas as pd
x = requests.get('https://www.baseball-reference.com/players/p/penaje02.shtml')
dfs = pd.read_html(x.content)
print(dfs)
df = pd.DataFrame(dfs)
when printing dfs it looks like this. I only want the second table.
[ Year Age Tm Lg G PA AB \
0 2018 20 HOU-min A- 36 156 136
1 2019 21 HOU-min A,A 109 473 409
2 2021 23 HOU-min AAA,Rk 37 160 145
3 2022 24 HOU AL 136 558 521
4 1 Yr 1 Yr 1 Yr 1 Yr 136 558 521
5 162 Game Avg. 162 Game Avg. 162 Game Avg. 162 Game Avg. 162 665 621
R H 2B ... OPS OPS TB GDP HBP SH SF IBB Pos \
0 22 34 5 ... 0.649 NaN 42 0 1 0 1 0 NaN
1 72 124 21 ... 0.825 NaN 180 4 11 0 6 0 NaN
2 25 43 5 ... 0.942 NaN 84 0 7 0 0 0 NaN
3 72 132 20 ... 0.715 101.0 222 5 6 1 5 0 *6/H
4 72 132 20 ... 0.715 101.0 222 5 6 1 5 0 NaN
5 86 157 24 ... 0.715 101.0 264 6 7 1 6 0 NaN
Awards
0 TRC · NYPL
1 DAV,FAY · MIDW,CARL
2 SKT,AST · AAAW,FCL
3 GG
4 NaN
5 NaN
[6 rows x 30 columns]]
however, i end up with error Must pass 2-d input. shape=(1, 6, 30)
after my last line. I have tried using df=dfs[1]
, but got the error list index our of range. Any way i can turn dfs from a list to a datframe?
CodePudding user response:
What do you mean you only want the second table? There's only one table, it's 6 rows and 30 columns. The backslashes show up when whatever you're trying to print to isn't wide enough to contain the dataframe without line wrapping. Here's the dataframe printed in a wider terminal:
The pd.read_html()
function returns a List[DataFrame]
so you first need to grab your dataframe from the list, and then you can subset it to get the columns you care about:
df = dfs[0]
columns = ['R', 'H', '2B', '3B', 'HR', 'RBI', 'SB', 'CS', 'BB', 'SO', 'BA', 'OBP', 'SLG', 'OPS', 'OPS ', 'TB', 'GDP', 'HBP', 'SH', 'SF', 'IBB', 'Pos']
print(df[columns])
Output:
R H 2B 3B HR RBI SB CS BB SO BA OBP SLG OPS OPS TB GDP HBP SH SF IBB Pos
0 22 34 5 0 1 10 3 0 18 19 0.250 0.340 0.309 0.649 NaN 42 0 1 0 1 0 NaN
1 72 124 21 7 7 54 20 10 47 90 0.303 0.385 0.440 0.825 NaN 180 4 11 0 6 0 NaN
2 25 43 5 3 10 21 6 1 8 41 0.297 0.363 0.579 0.942 NaN 84 0 7 0 0 0 NaN
3 72 132 20 2 22 63 11 2 22 135 0.253 0.289 0.426 0.715 101.0 222 5 6 1 5 0 *6/H
4 72 132 20 2 22 63 11 2 22 135 0.253 0.289 0.426 0.715 101.0 222 5 6 1 5 0 NaN
5 86 157 24 2 26 75 13 2 26 161 0.253 0.289 0.426 0.715 101.0 264 6 7 1 6 0 NaN