I have a some easy dataFrame with columns X(random float) and Y(nominative A,B,C)
X Y
1.01 A
-1.09 B
0.2 c
I want to transform it to dataFrame with columns
xA xB xC
1.01 -1.09 0.2
how could I do that ?
with minimum lines of code
CodePudding user response:
df1.melt('Y').assign(Y=lambda x:x['variable'] x['Y']).pivot_table('value', columns='Y')
output:
Y XA XB XC
value 1.01 -1.09 0.20
CodePudding user response:
`df= pd.read_csv("https://stepic.org/media/attachments/course/524/s_anova_test.csv")
xA=[]
xB=[]
xC=[]
for i in range(0, len(df.x)):
if df.y[i]=='A':
xA.append(df.x[i])
elif df.y[i]=='B':
xB.append(df.x[i])
else: xC.append(df.x[i])
df_t= pd.DataFrame({'xA':xA,'xB':xB, 'xC':xC})
display(df_t) '