I have this dataframe that I wish to replace all the comma by dot, for example it would be 50.5 and 81.5.
Unnamed: 0 NB Ppt Resale 5 yrs 10 yrs 15 yrs 20 yrs
1 VLCC 120 114 87 64 50,5 37
3 SUEZMAX 81,5 80 62 45 36 24
5 LR 2 69 72 57 42 32 20
7 AFRAMAX 66 68 55 40,5 30,5 19
9 LR 1 58 58 40 28 21 13,5
11 MR2 44 44,5 38 29 21 13
As dtypes for all the columns are object, I tried
df_useful[['NB', 'Ppt Resale ', '5 yrs', '10 yrs', '15 yrs',
'20 yrs']] = df_useful[['NB', 'Ppt Resale ', '5 yrs', '10 yrs', '15 yrs',
'20 yrs']].apply(pd.to_numeric, errors='coerce')
then the numbers with comma would become NAN
.
CodePudding user response:
A simple way:
out = df.replace(',', '.', regex=True)
Output:
Unnamed: 0 NB Ppt Resale 5 yrs 10 yrs 15 yrs 20 yrs
1 VLCC 120 114 87 64 50.5 37
3 SUEZMAX 81.5 80 62 45 36 24
5 LR 2 69 72 57 42 32 20
7 AFRAMAX 66 68 55 40.5 30.5 19
9 LR 1 58 58 40 28 21 13.5
11 MR2 44 44.5 38 29 21 13
If your goal is to convert to numeric automatically, you can use:
df2 = (df
.drop(columns='Unnamed: 0')
.select_dtypes(exclude='number')
.apply(lambda s: pd.to_numeric(s.str.replace(',', '.'),
errors='coerce'))
)
df[list(df2)] = df2
Output:
Unnamed: 0 NB Ppt Resale 5 yrs 10 yrs 15 yrs 20 yrs
1 VLCC 120.0 114.0 87 64.0 50.5 37.0
3 SUEZMAX 81.5 80.0 62 45.0 36.0 24.0
5 LR 2 69.0 72.0 57 42.0 32.0 20.0
7 AFRAMAX 66.0 68.0 55 40.5 30.5 19.0
9 LR 1 58.0 58.0 40 28.0 21.0 13.5
11 MR2 44.0 44.5 38 29.0 21.0 13.0
dtypes:
print(df.dtypes)
Unnamed: 0 object
NB float64
Ppt Resale float64
5 yrs int64
10 yrs float64
15 yrs float64
20 yrs float64
dtype: object
CodePudding user response:
Another possible solution, based on the following idea:
-
Convert the dataframe to
CSV
format and then read the CSV
string back, using the decimal separator parameter of pd.read_csv
to have decimal dots instead of decimal commas.
from io import StringIO
pd.read_csv(StringIO(df.to_csv()), decimal=',', index_col=0)
Output:
Unnamed: 0 NB Ppt Resale 5 yrs 10 yrs 15 yrs 20 yrs
1 VLCC 120.0 114.0 87 64.0 50.5 37.0
3 SUEZMAX 81.5 80.0 62 45.0 36.0 24.0
5 LR 2 69.0 72.0 57 42.0 32.0 20.0
7 AFRAMAX 66.0 68.0 55 40.5 30.5 19.0
9 LR 1 58.0 58.0 40 28.0 21.0 13.5
11 MR2 44.0 44.5 38 29.0 21.0 13.0