I'm trying to load a keras model which is based on mobilen in Tensorflow.js. Sadly this does not work I generated the model with the following python code
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import tensorflowjs as tfjs
input_shape = 224,224 #sorry of all lowercase
num_classes = 2
mobile_net = tf.keras.applications.MobileNetV2(
input_shape=input_shape (3,),
alpha=1.0,
include_top=False,
weights="imagenet",
input_tensor=None,
pooling=None,
classes=2,
classifier_activation="softmax"
)
model = keras.Sequential(
[
keras.Input(shape=input_shape (3,)),
layers.Rescaling(1./255),
mobile_net,
layers.Flatten(),
layers.Dense(num_classes, activation="softmax")
]
)
model.build((None,) input_shape (3,))
tfjs.converters.save_keras_model(model,'./model.json')
print(model.summary())
afterwards I'm trying to load the model in node.js REPL with the following commands
const tf = require('@tensorflow/tfjs')
async function predict(){
const model = await tf.loadLayersModel('file:///./model.json');
}
predict()
however I get the error message.
Uncaught TypeError: fetch failed
at Object.fetch (node:internal/deps/undici/undici:14294:11)
at process.processTicksAndRejections (node:internal/process/task_queues:95:5) {
cause: Error: not implemented... yet...
at makeNetworkError (node:internal/deps/undici/undici:6789:35)
at schemeFetch (node:internal/deps/undici/undici:13774:18)
at node:internal/deps/undici/undici:13654:26
at mainFetch (node:internal/deps/undici/undici:13671:11)
at fetching (node:internal/deps/undici/undici:13628:7)
at fetch2 (node:internal/deps/undici/undici:13506:20)
at Object.fetch (node:internal/deps/undici/undici:14292:18)
at fetch (node:internal/process/pre_execution:238:25)
at PlatformNode.fetch (/Users/z003cyub/Documents/projects/FY2022/aufsteller/node_modules/@tensorflow/tfjs-core/dist/tf-core.node.js:7542:33)
at HTTPRequest.<anonymous> (/Users/z003cyub/Documents/projects/FY2022/aufsteller/node_modules/@tensorflow/tfjs-core/dist/tf-core.node.js:8406:55) {
[cause]: undefined
I would like to blame it on the model structure, however, I get the same error with a freakingly simple model
model2 = keras.Sequential(
[
keras.Input(shape=input_shape (3,)),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
]
)
CodePudding user response:
not a layers or a model problem per-say, more of a nodejs
problem. latest version of node define global fetch
, but implementation is still not complete and it lacks support for file://
. and tfjs will use global fetch if its defined. try using node --no-experimental-fetch
so global fetch
is not defined and tfjs will use internal methods insteads.