I have an MCU (say an STM32) running, and I would like to 'pass' it a separately compiled binary file over UART/USB and use it like calling a function, where I can pass it data and collect its output? After its complete, a second, different binary would be sent to be executed, and so on.
How can I do this? Does this require an OS be running? I'd like to avoid that overhead.
Thanks!
CodePudding user response:
It is somewhat specific to the mcu what the exact call function is but you are just making a function call. You can try the function pointer thing but that has been known to fail with thumb (on gcc)(stm32 uses the thumb instruction set from arm).
First off you need to decide in your overall system design if you want to use a specific address for this code. for example 0x20001000. or do you want to have several of these resident at the same time and want to load them at any one of multiple possible addresses? This will determine how you link this code. Is this code standalone? with its own variables or does it want to know how to call functions in other code? All of this determines how you build this code. The easiest, at least to first try this out, is a fixed address. Build like you build your normal application but based in a ram address like 0x20001000. Then you load the program sent to you at that address.
In any case the normal way to "call" a function in thumb (say an stm32). Is the bl or blx instruction. But normally in this situation you would use bx but to make it a call need a return address. The way arm/thumb works is that for bx and other related instructions the lsbit determines the mode you switch/stay in when branching. Lsbit set is thumb lsbit clear is arm. This is all documented in the arm documentation which completely covers your question BTW, not sure why you are asking...
Gcc and I assume llvm struggles to get this right and then some users know enough to be dangerous and do the worst thing of ADDing one (rather than ORRing one) or even attempting to put the one there. Sometimes putting the one there helps the compiler (this is if you try to do the function pointer approach and hope the compiler does all the work for you *myfun = 0x10000 kind of thing). But it has been shown on this site that you can make subtle changes to the code or depending on the exact situation the compiler will get it right or wrong and without looking at the code you have to help with the orr one thing. As with most things when you need an exact instruction, just do this in asm (not inline please, use real) yourself, make your life 10000 times easier...and your code significantly more reliable.
So here is my trivial solution, extremely reliable, port the asm to your assembly language.
.thumb
.thumb_func
.globl HOP
HOP:
bx r0
I C it looks like this
void HOP ( unsigned int );
Now if you loaded to address 0x20001000 then after loading there
HOP(0x20001000|1);
Or you can
.thumb
.thumb_func
.globl HOP
HOP:
orr r0,#1
bx r0
Then
HOP(0x20001000);
The compiler generates a bl to hop which means the return path is covered.
If you want to send say a parameter...
.thumb
.thumb_func
.globl HOP
HOP:
orr r1,#1
bx r1
void HOP ( unsigned int, unsigned int );
HOP(myparameter,0x20001000);
Easy and extremely reliable, compiler cannot mess this up.
If you need to have functions and global variables between the main app and the downloaded app, then there are a few solutions and they involve resolving addresses, if the loaded app and the main app are not linked at the same time (doing a copy and jump and single link is generally painful and should be avoided, but...) then like any shared library you need to have a mechanism for resolving addresses. If this downloaded code has several functions and global variables and/or your main app has several functions and global variables that the downloaded library needs, then you have to solve this. Essentially one side has to have a table of addresses in a way that both sides agree on the format, could be as a simple array of addresses and both sides know which address is which simply from position. Or you create a list of addresses with labels and then you have to search through the list matching up names to addresses for all the things you need to resolve. You could for example use the above to have a setup function that you pass an array/structure to (structures across compile domains is of course a very bad thing). That function then sets up all the local function pointers and variable pointers to the main app so that subsequent functions in this downloaded library can call the functions in the main app. And/or vice versa this first function can pass back an array structure of all the things in the library.
Alternatively a known offset in the downloaded library there could be an array/structure for example the first words/bytes of that downloaded library. Providing one or the other or both, that the main app can find all the function addresses and variables and/or the caller can be given the main applications function addresses and variables so that when one calls the other it all works... This of course means function pointers and variable pointers in both directions for all of this to work. Think about how .so or .dlls work in linux or windows, you have to replicate that yourself.
Or you go the path of linking at the same time, then the downloaded code has to have been built along with the code being run, which is probably not desirable, but some folks do this, or they do this to load code from flash to ram for various reasons. but that is a way to resolve all the addresses at build time. then part of the binary in the build you extract separately from the final binary and then pass it around later.
If you do not want a fixed address, then you need to build the downloaded binary as position independent, and you should link that with .text and .bss and .data at the same address.
MEMORY
{
hello : ORIGIN = 0x20001000, LENGTH = 0x1000
}
SECTIONS
{
.text : { *(.text*) } > hello
.rodata : { *(.rodata*) } > hello
.bss : { *(.bss*) } > hello
.data : { *(.data*) } > hello
}
you should obviously do this anyway, but with position independent then you have it all packed in along with the GOT (might need a .got entry but I think it knows to use .data). Note, if you put .data after .bss with gnu at least and insure, even if it is a bogus variable you do not use, make sure you have one .data then .bss is zero padded and allocated for you, no need to set it up in a bootstrap.
If you build for position independence then you can load it almost anywhere, clearly on arm/thumb at least on a word boundary.
In general for other instruction sets the function pointer thing works just fine. In ALL cases you simply look at the documentation for the processor and see the instruction(s) used for calling and returning or branching and simply use that instruction, be it by having the compiler do it or forcing the right instruction so that you do not have it fail down the road in a re-compile (and have a very painful debug). arm and mips have 16 bit modes that require specific instructions or solutions for switching modes. x86 has different modes 32 bit and 64 bit and ways to switch modes, but normally you do not need to mess with this for something like this. msp430, pic, avr, these should be just a function pointer thing in C should work fine. In general do the function pointer thing then see what the compiler generates and compare that to the processor documentation. (compare it to a non-function pointer call).
If you do not know these basic C concepts of function pointer, linking a bare metal app on an mcu/processor, bootstrap, .text, .data, etc. You need to go learn all that.
The times you decide to switch to an operating system are....if you need a filesystem, networking, or a few things like this where you just do not want to do that yourself. Now sure there is lwip for networking and some embedded filesystem libraries. And multithreading then an os as well, but if all you want to do is generate a branch/jump/call instruction you do not need an operating system for that. Just generate the call/branch/whatever.
CodePudding user response:
Loading and execution a fully linked binary and loading and calling a single function (and returning to the caller) are not really the same thing. The latter is somewhat complicated and involves "dynamic linking", where the code effectively and secures in the same execution environment as the caller.
Loading a complete stand-alone executable in the other hand is more straightforward and is the function of a bootloader. A bootloader loads and jumps to the loaded executable which then establishes it's own execution environment. Returning to the bootloader requires a processor reset.
In this case it would make sense to have the bootloader load and execute code in RAM if you are going to be frequently loading different code. However be aware that on Harvard Architecture devices like STM32, RAM execution may slow down execution because data and instruction fetch share the same bus.
The actual implementation of a bootloader will depend on the target architecture, but for Cortex-M devices is fairly straightforward and dealt with elsewhere.
STM32 actually includes an on-chip bootloader (you need to configure the boot source pins to invoke it), which I believe can load and execute code in RAM. It is normally used to load a secondary bootloader to load and program flash, but it can be used for loading any code.
You do need to build and link your code to run from RAM at the address tle loader locates it, or if supported build position-indeoendent code that can run from anywhere.