Home > Blockchain >  apply function to dataframe's chosen column whilst grouping by another chosen column
apply function to dataframe's chosen column whilst grouping by another chosen column

Time:01-11

I would like to apply the below function (cut.at.n.tile) to a data frame (some_data_frame) whilst grouping by a chosen column (e.g. SomeGroupingColumn) and choosing the target column (e.g. ChosenColumn). I tried using sapply() without success - see code below. Any input very much appreciated. Apologies for this not being fully replicable/self contained ...

cut.at.n.tile <- function(X, n = 7) { 
   cut(X, breaks = quantile(X, probs = (0:n)/n, na.rm = TRUE),
       labels = 1:n, include.lowest = TRUE)
}

some_data_frame$SeasonTypeNumber = sapply(split(some_data_frame['ChosenColumn'], SomeGroupingColumn), cut.at.n.tile)

CodePudding user response:

There are a few problems here.

  1. some_data_frame['ChosenColumn'] always returns a single-column data.frame, not a vector which your function requires. I suggest switching to some_data_frame[['ChosenColumn']].

  2. SomeGroupingColumn looks like it should be a column (hence the name) in the data, but it is not referenced within a frame. Perhaps some_data_frame[['SomeGroupingColumn']].

  3. You need to ensure that the breaks= used are unique. For example,

    cut.at.n.tile(subset(mtcars, cyl == 8)$disp)
    # Error in cut.default(X, breaks = quantile(X, probs = (0:n)/n, na.rm = TRUE),  : 
    #   'breaks' are not unique
    

    If we debug that function, we see

    X
    #  [1] 360.0 360.0 275.8 275.8 275.8 472.0 460.0 440.0 318.0 304.0 350.0 400.0 351.0 301.0
    quantile(X, probs = (0:n)/n, na.rm = TRUE)
    #        0% 14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%      100% 
    #  275.8000  275.8000  303.1429  336.2857  354.8571  371.4286  442.8571  472.0000 
    

    where 275.8 is repeated. This can happen based on nuances in the raw data, and you can't really predict when it will occur.

    Since we'll likely have multiple groups, all of the subvectors' levels= (since cut returns a factor) must be the same length, though admittedly 1 in one group is unlikely to be the same as 1 in another group.

    Since in this case we can never be certain which n-tile a number strictly applies (in 275.8 in the first or second n-tile?), we can only adjust one of the dupes and accept the imperfection. I suggest a cumsum(duplicated(.)*1e-9): the premise is that it adds an iota to each value that is a dupe, rendering it no-longer a dupe. It is possible that adding 1e-9 to one value will make it a dupe of the next ... so we can be a little OCD by repeatedly doing this until we have no duplicates.

  4. sapply is unlikely to return a vector, much (almost "certainly") more likely to return a list (if the groups are not perfectly balanced) or a matrix (perfectly balanced). We cannot simply unlist, since the order of the unlisted vectors will likely not be the order of the source data. We can use `split<-`, or we can use a few other techniques (dplyr and/or data.table)

Updated function, and demonstration with mtcars:

cut.at.n.tile <- function(X, n = 7) { 
   brks <- quantile(X, probs = (0:n)/n, na.rm = TRUE)
   while (any(dupes <- duplicated(brks))) brks <- brks   cumsum(1e-9*dupes)
   cut(X, breaks = brks, labels = 1:n, include.lowest = TRUE)
}

base R

ret <- lapply(split(mtcars[['disp']], mtcars[['cyl']]), cut.at.n.tile)
mtcars[["newcol"]] <- NA  # create an empty column
split(mtcars[['newcol']], mtcars[['cyl']]) <- ret
mtcars
#                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb newcol
# Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4      2
# Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4      2
# Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1      4
# Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1      7
# Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2      5
# Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1      6
# Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4      5
# Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2      7
# Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2      7
# Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4      4
# Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4      4
# Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3      1
# Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3      1
# Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3      1
# Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4      7
# Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4      7
# Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4      6
# Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1      2
# Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2      1
# Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1      1
# Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1      5
# Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2      3
# AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2      3
# Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4      4
# Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2      6
# Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1      3
# Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2      5
# Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2      3
# Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4      4
# Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6      1
# Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8      2
# Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2      6

Validation:

cut.at.n.tile(subset(mtcars, cyl == 8)$disp)
#  [1] 5 5 1 1 1 7 7 6 3 3 4 6 4 2
# Levels: 1 2 3 4 5 6 7
subset(mtcars, cyl == 8)$newcol
#  [1] 5 5 1 1 1 7 7 6 3 3 4 6 4 2

dplyr

library(dplyr)
mtcars %>%
  group_by(cyl) %>%
  mutate(newcol = cut.at.n.tile(disp)) %>%
  ungroup()
# # A tibble: 32 × 12
#      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb newcol
#    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> 
#  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4 2     
#  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4 2     
#  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1 4     
#  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1 7     
#  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2 5     
#  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1 6     
#  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4 5     
#  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2 7     
#  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2 7     
# 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4 4     
# # … with 22 more rows
# # ℹ Use `print(n = ...)` to see more rows

data.table

library(data.table)
as.data.table(mtcars)[, newcol := cut.at.n.tile(disp), by = .(cyl)][]
#       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb newcol
#     <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num> <fctr>
#  1:  21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4      2
#  2:  21.0     6 160.0   110  3.90 2.875 17.02     0     1     4     4      2
#  3:  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1      4
#  4:  21.4     6 258.0   110  3.08 3.215 19.44     1     0     3     1      7
#  5:  18.7     8 360.0   175  3.15 3.440 17.02     0     0     3     2      5
#  6:  18.1     6 225.0   105  2.76 3.460 20.22     1     0     3     1      6
#  7:  14.3     8 360.0   245  3.21 3.570 15.84     0     0     3     4      5
#  8:  24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2      7
#  9:  22.8     4 140.8    95  3.92 3.150 22.90     1     0     4     2      7
# 10:  19.2     6 167.6   123  3.92 3.440 18.30     1     0     4     4      4
# ---                                                                         
# 23:  15.2     8 304.0   150  3.15 3.435 17.30     0     0     3     2      3
# 24:  13.3     8 350.0   245  3.73 3.840 15.41     0     0     3     4      4
# 25:  19.2     8 400.0   175  3.08 3.845 17.05     0     0     3     2      6
# 26:  27.3     4  79.0    66  4.08 1.935 18.90     1     1     4     1      3
# 27:  26.0     4 120.3    91  4.43 2.140 16.70     0     1     5     2      5
# 28:  30.4     4  95.1   113  3.77 1.513 16.90     1     1     5     2      3
# 29:  15.8     8 351.0   264  4.22 3.170 14.50     0     1     5     4      4
# 30:  19.7     6 145.0   175  3.62 2.770 15.50     0     1     5     6      1
# 31:  15.0     8 301.0   335  3.54 3.570 14.60     0     1     5     8      2
# 32:  21.4     4 121.0   109  4.11 2.780 18.60     1     1     4     2      6
  •  Tags:  
  • r
  • Related