I am having a dataframe df1 and df2
df1=
|carno | sales |
|------|------ |
|101 | 1 |
|102 | 2 |
|103 | 6 |
|101 | 8 |
df2 =
|jeepno| jsales|
|------|-------|
|107 | 3 |
|108 | 9 |
I want to add df2 columns in df1 I actually want the df1 column to be like this df1 =
carno | sales | jeepno | jsales |
---|---|---|---|
101 | 1 | 107 | 3 |
102 | 2 | 108 | 9 |
103 | 6 | nan | nan |
101 | 8 | nan | nan |
I tried below methed
df1['jeepno'] = nan df1['jsales'] = nan
I want to try using = method
df1['jeepno'] = df2['jeepno'] df1['jsales'] = df2['jsales']
the above method is working in python 3.10 but in my friends 3.6 its failing with error
"valueerror cannot reindex from a duplicate axis"
Pls assist
CodePudding user response:
No need to manually set columns with nan
, just concat dataframes columnwise with
pd.concat([df1, df2], axis=1)
carno sales jeepno jsales
0 101 1 107.0 3.0
1 102 2 108.0 9.0
2 103 6 NaN NaN
3 101 8 NaN NaN