Home > Blockchain >  Pandas compute time duration among 3 columns and skip the none value at the same time
Pandas compute time duration among 3 columns and skip the none value at the same time

Time:02-03

I have a Dateframe ,you can have it ,by runnnig:

import pandas as pd
from io import StringIO

df = """
case_id    first_created  last_paid       submitted_time
   3456    2021-01-27     2021-01-29      2021-01-26 21:34:36.566023 00:00
   7891    2021-08-02     2021-09-16      2022-10-26 19:49:14.135585 00:00
   1245    2021-09-13     None            2022-10-31 02:03:59.620348 00:00
   9073    None           None            2021-09-12 10:25:30.845687 00:00
 """
df= pd.read_csv(StringIO(df.strip()), sep='\s\s ', engine='python')

df

The logic is create 2 new columns for each row:

df['create_duration']=df['submitted_time']-df['first_created']
df['paid_duration']=df['submitted_time']-df['last_paid']

The unit need to be days.

My changeling is sometime the last_paid or first_created will be none,how to skip the none value in the same row ,but still keep computing the another column ,if its value is not none ?

For example ,the last_paid in the third row is none ,but first_created is not,so for this row:

df['create_duration']=df['submitted_time']-df['first_created']
df['paid_duration']='N/A'

CodePudding user response:

You can use:

submitted = pd.to_datetime(df['submitted_time'], errors='coerce', utc=True).dt.tz_localize(None)

df['create_duration'] = submitted.sub(pd.to_datetime(df['first_created'], errors='coerce')).dt.days
df['paid_duration'] = submitted.sub(pd.to_datetime(df['last_paid'], errors='coerce')).dt.days

Output:


   case_id first_created   last_paid                    submitted_time  create_duration  paid_duration
0     3456    2021-01-27  2021-01-29  2021-01-26 21:34:36.566023 00:00             -1.0           -3.0
1     7891    2021-08-02  2021-09-16  2022-10-26 19:49:14.135585 00:00            450.0          405.0
2     1245    2021-09-13        None  2022-10-31 02:03:59.620348 00:00            413.0            NaN
3     9073          None        None  2021-09-12 10:25:30.845687 00:00              NaN            NaN
  • Related