I have few images like these,
I can extract the names and roles from these images using a ocr tool like tesseract from python, but I want to preserve the hierarchy along the way.
Please provide some interesting way to solve this problem. I am not able to think of one proper approach to the problem.
import pytesseract
print(pytesseract.image_to_string(Image.open('test.png'))) # this gives me the strings.
I want information in structure in any datatype, something like,
Eg from chart1 : erica is ceo, under erica we have russell, david work etc.,
CodePudding user response:
Visualization of results:
Approach:
- box borders and connecting lines ("nets") have certain color/brightness
- work with masks, lists of contours, label maps
- calculate overlap/intersection
- at overlap, check what box and what net participate
Written for the one specific image you provided. The other one is too low-resolution.
For less favorable input data, this would need adapting. That shouldn't be difficult though. Just different thresholds and whatnot.
This should also already work with non-box nodes (e.g. circles/ellipses).
You can figure out the OCR part. This approach and code gives you the individual boxes that you can pass to OCR.
Output:
net 1 connects boxes [1, 2]
net 2 connects boxes [2, 3, 4, 5]
net 3 connects boxes [4, 6, 7, 8, 9, 10]
net 4 connects boxes [6, 11, 16, 21]
net 5 connects boxes [7, 12, 17, 22]
net 6 connects boxes [8, 13, 18, 23]
net 7 connects boxes [9, 14, 19, 24]
net 8 connects boxes [10, 15, 20, 25]
Code:
#!/usr/bin/env python3
import os
import sys
from math import *
import numpy as np
import cv2 as cv
import pprint
import collections
np.set_printoptions(suppress=True, linewidth=120)
########################################################################
im = cv.imread("9Rsju.jpg", cv.IMREAD_GRAYSCALE) / np.float32(255)
# optional downscale. easier to display.
im = cv.resize(im, fx=0.5, fy=0.5, dsize=None, interpolation=cv.INTER_AREA)
# generally, indices are 0..(N-1) and labels are 1..N and always (index 1) == label
########################################################################
# boxes
# select box borders
boxes_mask = (im <= 0.50) * np.uint8(255)
boxes_mask = cv.dilate(boxes_mask, kernel=None, iterations=1) # cover marginal pixels
(boxes_contours, _) = cv.findContours(
image=boxes_mask,
mode=cv.RETR_EXTERNAL,
method=cv.CHAIN_APPROX_SIMPLE)
numboxes = len(boxes_contours)
# sort contours vertically
def valuation(contour):
(x,y,w,h) = cv.boundingRect(contour)
return y x / 10 # "objective function"
# not vital, just pretty
boxes_contours.sort(key=valuation)
boxes_rects = [ cv.boundingRect(c) for c in boxes_contours ]
def bottom_of_rect(rect):
(x,y,w,h) = rect
return (x w//2, y h)
def top_of_rect(rect):
(x,y,w,h) = rect
return (x w//2, y)
# boxes mask (fill inside of box)
cv.drawContours(
boxes_mask,
boxes_contours,
contourIdx=-1,
color=255,
thickness=cv.FILLED)
# label map for boxes
boxes_labels = np.zeros_like(boxes_mask, dtype=np.uint8)
for (i, contour) in enumerate(boxes_contours):
box_label = i 1
cv.drawContours(
boxes_labels,
boxes_contours,
contourIdx=i,
color=box_label,
thickness=cv.FILLED)
########################################################################
# connecting lines ("nets")
# select
nets_mask = (im >= 0.7) & (im <= 0.9) # 0.8 margin
nets_mask = nets_mask * np.uint8(255)
nets_mask &= ~boxes_mask
# create slight overlap
nets_mask = cv.dilate(nets_mask, kernel=None, iterations=1)
# label map
(numnets, nets_labels) = cv.connectedComponents(nets_mask)
########################################################################
# connectivity
overlap = nets_mask & boxes_mask
(y,x) = overlap.nonzero() # pixel coordinates
relations = set(zip(nets_labels[y,x], boxes_labels[y,x]))
by_net = collections.defaultdict(lambda: set())
for (net,box) in relations:
by_net[net].add(box)
for net_label, boxes in sorted(by_net.items()):
print(f"net {net_label} connects boxes", sorted(boxes))
########################################################################
# visualization
canvas = cv.cvtColor(im * 0.5, cv.COLOR_GRAY2BGR)
for net_label, boxes in sorted(by_net.items()):
boxes = sorted(boxes)
headbox_label = boxes.pop(0)
headbox_center = bottom_of_rect(boxes_rects[headbox_label-1])
for box_label in boxes:
box_center = top_of_rect(boxes_rects[box_label-1])
cv.line(canvas,
pt1=headbox_center,
pt2=box_center,
color=(0,0,255),
thickness=2)
for (i, contour) in enumerate(boxes_contours):
(x,y,w,h) = boxes_rects[i]
cv.rectangle(canvas,
pt1=(x,y), pt2=(x w,y h),
color=(255,255,255),
thickness=2)
cv.putText(canvas,
text=f"Box {i 1}",
org=(x 10, y 40),
fontFace=cv.FONT_HERSHEY_SIMPLEX,
fontScale=1,
color=(255,255,255),
thickness=2)
########################################################################
# display
cv.namedWindow("canvas", cv.WINDOW_NORMAL)
cv.imshow("canvas", canvas)
cv.waitKey(-1)
cv.destroyAllWindows()