How to sum up values in amount with duplicate rows?
For example there are 2 unique dates. Can we do groupby? I'm expecting result like
Date Amount
2019-07-01 20000000.....
2019-07-02 3000000000.....
The dataframe is below :
Date Amount
2019-07-01 2,055,359.9800
2019-07-01 2,055,359.9800
2019-07-01 145198200
2019-07-01 145198200
2019-07-02 1,924,232.7200
2019-07-02 137,860,984.9000
2019-07-02 137,466,690.8800
2019-07-02 138,102,066.0400
2019-07-02 1,928,055.4400
CodePudding user response:
Yes, you can groupby
the Date
column and use sum
to get the total Amount
for each group.
import pandas as pd
df = pd.DataFrame({'Date': ['2019-07-01', '2019-07-01', '2019-07-01',
'2019-07-02', '2019-07-02', '2019-07-02'],
'Amount': [1, 2, 3, 4, 5, 6]})
print(df)
df2 = df.groupby(['Date']).sum()
print(df2)
Output:
Amount
Date
2019-07-01 6
2019-07-02 15
CodePudding user response:
Yes we can:
df = pd.DataFrame(...)
sums = df.groupby(['Date']).sum()