I have a dataframe like this:
ID Transaction_time Status final_time
1 1981-01-12 hit
1 1981-01-13 hit
1 1981-01-14 good 1981-01-15
1 1981-01-15 OK 1981-01-16
2 1981-01-06 good 1981-01-17
3 1981-01-07 hit 1981-01-16
4 1981-01-06 hit
4 1981-01-07 good
4 1981-01-08 good 1981-01-10
I would like to keep ID
if:
Status
has "hit" and "good"/"OK"- the
final_time
is not empty for the lastTransaction_time
Then, I would like to extract:
id
- theID
status
- the lastTransaction_time
start_time
- theTransaction_time
whenStatus
changes from "hit" to "good"finish_time
- thefinal_time
at the lastTransaction_time
For the above example, it would be:
id status start_time finish_time
1 OK 1981-01-14 1981-01-16
4 good 1981-01-07 1981-01-10
How to do it in PySpark?
CodePudding user response:
your start time is when status is "good". can create a column to get date only for status good and group it. Tried my way,hope this helps.
from pyspark.sql import functions as f
df.show()
--- ---------------- ------ ----------
| ID|Transaction_time|Status|final_time|
--- ---------------- ------ ----------
| 1| 1981-01-12| hit| null|
| 1| 1981-01-13| hit| null|
| 1| 1981-01-14| good|1981-01-15|
| 1| 1981-01-15| OK|1981-01-16|
| 2| 1981-01-06| good|1981-01-17|
| 3| 1981-01-07| hit|1981-01-16|
| 4| 1981-01-06| hit| null|
| 4| 1981-01-07| good| null|
| 4| 1981-01-08| good|1981-01-10|
--- ---------------- ------ ----------
df = df.withColumn('trans_time',f.when(f.col('Status') == 'good',f.col('Transaction_time')).otherwise(None))
--- ---------------- ------ ---------- ----------
| ID|Transaction_time|Status|final_time|trans_time|
--- ---------------- ------ ---------- ----------
| 1| 1981-01-12| hit| null| null|
| 1| 1981-01-13| hit| null| null|
| 1| 1981-01-14| good|1981-01-15|1981-01-14|
| 1| 1981-01-15| OK|1981-01-16| null|
| 2| 1981-01-06| good|1981-01-17|1981-01-06|
| 3| 1981-01-07| hit|1981-01-16| null|
| 4| 1981-01-06| hit| null| null|
| 4| 1981-01-07| good| null|1981-01-07|
| 4| 1981-01-08| good|1981-01-10|1981-01-08|
--- ---------------- ------ ---------- ----------
cnd1 = f.when((f.max('Status') == 'hit') & (f.min('Status').isin(['OK','good'])),f.first('trans_time',ignorenulls=True))
cnd2 = f.when((f.max('Status') == 'hit') & (f.min('Status').isin(['OK','good'])),f.last('final_time',ignorenulls=True))
df.groupby('id').agg(cnd1.name("start_time"),f.min('Status').name('status'),cnd2.name('finish_time')).dropna().show()
--- ---------- ------ -----------
| id|start_time|status|finish_time|
--- ---------- ------ -----------
| 1|1981-01-14| OK| 1981-01-16|
| 4|1981-01-08| good| 1981-01-10|
--- ---------- ------ -----------
CodePudding user response:
For unsorted data, example is like this:
ID Transaction_time Status final_time
1 1981-01-12 hit
1 1981-01-13 hit
1 1981-01-15 good
1 1981-01-14 good 1981-01-15
1 1981-01-16 OK 1981-01-16
2 1981-01-06 good 1981-01-17
3 1981-01-07 hit 1981-01-16
4 1981-01-06 hit
4 1981-01-07 good
4 1981-01-08 good 1981-01-10
for a given ID, I want to sort Transaction_time first, then find the time point status changes from hit to good/OK. The result will be:
id status start_time finish_time
1 1981-01-14 OK 1981-01-16
4 1981-01-07 good 1981-01-10
For ID=1, after sort Transaction_time in ascending order, at 1981-01-14, status changes from hit to good. How can I sort within each group on Transaction_time first, then do above operation Suresh suggested?
CodePudding user response:
I mostly used window functions instead of groupby:
w1 = Window.partitionBy('ID').orderBy(F.col('Transaction_time').desc())
w2 = Window.partitionBy('ID').orderBy(F.col('final_time').desc())
df2 = df1.withColumn('next_st', F.lag('Status', 1).over(w1)) \
.withColumn('next_tt', F.lag('Transaction_time', 1).over(w1)) \
.withColumn('max_tt', F.max('Transaction_time').over(w1)) \
.withColumn('max_ft', F.max('final_time').over(w2))
df3 = df2.join(df2.filter((F.col('Transaction_time') == F.col('max_tt')) & F.col('final_time').isNotNull()), 'ID', 'leftsemi')
df4 = df3.filter((F.col('Status') == 'hit') & F.col('next_st').isin(['good', 'OK']))
df5 = (
df4.alias('df4')
.join(df1.alias('df1'), (df1.ID == df4.ID) & (F.col('df1.final_time') == F.col('df4.max_ft')))
.select(
F.col('df4.ID').alias('id'),
F.col('df1.Status').alias('status'),
F.col('df4.next_tt').alias('start_time'),
F.col('df4.max_ft').alias('finish_time')
)
)
df5.show()
# --- ------ ---------- -----------
# | id|status|start_time|finish_time|
# --- ------ ---------- -----------
# | 4| good|1981-01-07| 1981-01-10|
# | 1| OK|1981-01-14| 1981-01-16|
# --- ------ ---------- -----------
Imports:
from pyspark.sql import functions as F, Window
Original dataset:
data = [
(1, '1981-01-12', 'hit', None),
(1, '1981-01-13', 'hit', None),
(1, '1981-01-14', 'good', '1981-01-15'),
(1, '1981-01-15', 'OK', '1981-01-16'),
(2, '1981-01-06', 'good', '1981-01-17'),
(3, '1981-01-07', 'hit', '1981-01-16'),
(4, '1981-01-06', 'hit', None),
(4, '1981-01-07', 'good', None),
(4, '1981-01-08', 'good', '1981-01-10')]
df1 = spark.createDataFrame(data, ['ID', 'Transaction_time', 'Status', 'final_time'])
df1 = df1.withColumn('Transaction_time', F.col('Transaction_time').cast('date')) \
.withColumn('final_time', F.col('final_time').cast('date'))
df1.show()
# --- ---------------- ------ ----------
# | ID|Transaction_time|Status|final_time|
# --- ---------------- ------ ----------
# | 1| 1981-01-12| hit| null|
# | 1| 1981-01-13| hit| null|
# | 1| 1981-01-14| good|1981-01-15|
# | 1| 1981-01-15| OK|1981-01-16|
# | 2| 1981-01-06| good|1981-01-17|
# | 3| 1981-01-07| hit|1981-01-16|
# | 4| 1981-01-06| hit| null|
# | 4| 1981-01-07| good| null|
# | 4| 1981-01-08| good|1981-01-10|
# --- ---------------- ------ ----------
Intermediate dfs:
df1
--- ---------------- ------ ----------
| ID|Transaction_time|Status|final_time|
--- ---------------- ------ ----------
| 1| 1981-01-12| hit| null|
| 1| 1981-01-13| hit| null|
| 1| 1981-01-14| good|1981-01-15|
| 1| 1981-01-15| OK|1981-01-16|
| 2| 1981-01-06| good|1981-01-17|
| 3| 1981-01-07| hit|1981-01-16|
| 4| 1981-01-06| hit| null|
| 4| 1981-01-07| good| null|
| 4| 1981-01-08| good|1981-01-10|
--- ---------------- ------ ----------
df2
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
| ID|Transaction_time|Status|final_time|next_st| next_tt| max_tt| max_ft|
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
| 1| 1981-01-15| OK|1981-01-16| null| null|1981-01-15|1981-01-16|
| 1| 1981-01-14| good|1981-01-15| OK|1981-01-15|1981-01-15|1981-01-16|
| 1| 1981-01-13| hit| null| good|1981-01-14|1981-01-15|1981-01-16|
| 1| 1981-01-12| hit| null| hit|1981-01-13|1981-01-15|1981-01-16|
| 3| 1981-01-07| hit|1981-01-16| null| null|1981-01-07|1981-01-16|
| 2| 1981-01-06| good|1981-01-17| null| null|1981-01-06|1981-01-17|
| 4| 1981-01-08| good|1981-01-10| null| null|1981-01-08|1981-01-10|
| 4| 1981-01-07| good| null| good|1981-01-08|1981-01-08|1981-01-10|
| 4| 1981-01-06| hit| null| good|1981-01-07|1981-01-08|1981-01-10|
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
df3
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
| ID|Transaction_time|Status|final_time|next_st| next_tt| max_tt| max_ft|
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
| 1| 1981-01-15| OK|1981-01-16| null| null|1981-01-15|1981-01-16|
| 1| 1981-01-14| good|1981-01-15| OK|1981-01-15|1981-01-15|1981-01-16|
| 1| 1981-01-13| hit| null| good|1981-01-14|1981-01-15|1981-01-16|
| 1| 1981-01-12| hit| null| hit|1981-01-13|1981-01-15|1981-01-16|
| 3| 1981-01-07| hit|1981-01-16| null| null|1981-01-07|1981-01-16|
| 2| 1981-01-06| good|1981-01-17| null| null|1981-01-06|1981-01-17|
| 4| 1981-01-08| good|1981-01-10| null| null|1981-01-08|1981-01-10|
| 4| 1981-01-07| good| null| good|1981-01-08|1981-01-08|1981-01-10|
| 4| 1981-01-06| hit| null| good|1981-01-07|1981-01-08|1981-01-10|
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
df4
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
| ID|Transaction_time|Status|final_time|next_st| next_tt| max_tt| max_ft|
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
| 1| 1981-01-13| hit| null| good|1981-01-14|1981-01-15|1981-01-16|
| 4| 1981-01-06| hit| null| good|1981-01-07|1981-01-08|1981-01-10|
--- ---------------- ------ ---------- ------- ---------- ---------- ----------
df5
--- ------ ---------- -----------
| id|status|start_time|finish_time|
--- ------ ---------- -----------
| 4| good|1981-01-07| 1981-01-10|
| 1| OK|1981-01-14| 1981-01-16|
--- ------ ---------- -----------