Using Python 3
I have a dataframe sort of like this:
productCode productType storeCode salesAmount moreInfo
111 1 111 111 info
111 1 112 112 info
456 4 456 456 info
and so on for thousands of rows
I want to select (and have a list with the codes for) the X amount of the best selling unique products for each different store.
How would I accomplish that?
CodePudding user response:
Data:
df = pd.DataFrame({'productCode': [111,111,456,123,125],
'productType' : [1,1,4,3,3],
'storeCode' : [111,112,112,456,456],
'salesAmount' : [111,112,34,456,1235]})
productCode productType storeCode salesAmount
0 111 1 111 111
1 111 1 112 112
2 456 4 112 34
3 123 3 456 456
4 125 3 456 1235
It sounds like you want the best selling product at each storeCode
? In which case:
df.sort_values('salesAmount', ascending=False).groupby('storeCode').head(1)
productCode productType storeCode salesAmount
4 125 3 456 1235
1 111 1 112 112
0 111 1 111 111
Instead, if you want the best selling of each productType
at each storeCode
, then:
df.sort_values('salesAmount', ascending=False).groupby(['storeCode', 'productType']).head(1)
productCode productType storeCode salesAmount
4 125 3 456 1235
1 111 1 112 112
0 111 1 111 111
2 456 4 112 34