I am trying to calculate aggregate using a lambda function with if... else.
My dataframe looks like this
States Sales
0 Delhi 0.0
1 Kerala 2.5
2 Punjab 5.0
3 Haryana 7.5
4 Delhi 10.0
5 Kerala 12.5
6 Punjab 15.0
7 Haryana 17.5
Expected summary table should like this
States Sales
Delhi 10.0
Haryana 25.0
Kerala 15.0
Punjab 20.0
I tried using the following code
df.groupby('States').agg({
'Sales':lambda x: np.sum(x) if (x>7) else 0
})
I get ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
What am I doing wrong?
CodePudding user response:
df.groupby('States')['Sales'].agg(lambda x: sum(x) if x.ge(7).any() else 0).to_frame('Sales')
Sales
States
Delhi 10.0
Haryana 25.0
Kerala 15.0
Punjab 20.0
CodePudding user response:
If compare by (x>7)
ouput is Series
with True
and False
s, for test if match at least value use any
:
df1 = df.groupby('States').agg({'Sales':lambda x: np.sum(x) if (x>7).any() else 0})
print (df1)
Sales
States
Delhi 10.0
Haryana 25.0
Kerala 15.0
Punjab 20.0
If need replace all values lower or equal like 7
to 0
and then aggregate sum
use:
df2 = df['Sales'].where(df['Sales'].gt(7), 0).to_frame().groupby(df['States']).sum()
print (df2)
Sales
States
Delhi 10.0
Haryana 25.0
Kerala 12.5
Punjab 15.0