Home > Enterprise >  Restarting count column when different row appears in Python/Pandas
Restarting count column when different row appears in Python/Pandas

Time:09-28

I have the following Pandas DataFrame with multiple amounts for each address. The count of 'amounts' per address varies.

Index                                           type    amount
0   0xd81c0B4FEA284c908C5700187a67698b416a6bcc  outflow 2.553800e 04
1   0xd81c0B4FEA284c908C5700187a67698b416a6bcc  inflow  1.999650e 05
2   0xd81c0B4FEA284c908C5700187a67698b416a6bcc  inflow  3.896400e 04
3   0x0A5E7C50eA6BB695F2f4e75D97D3381592B59C9F  inflow  3.060000e 05
4   0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow 1.569367e 05
5   0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow 1.219739e 04

I want to create a column that would count from 1 to n rows per address, but I don't know how to restart the count at the next address.

Something that would look like this:

Index                                           type    amount          Epoch
0   0xd81c0B4FEA284c908C5700187a67698b416a6bcc  outflow 2.553800e 04    1
1   0xd81c0B4FEA284c908C5700187a67698b416a6bcc  inflow  1.999650e 05    2
2   0xd81c0B4FEA284c908C5700187a67698b416a6bcc  inflow  3.896400e 04    3
3   0x0A5E7C50eA6BB695F2f4e75D97D3381592B59C9F  inflow  3.060000e 05    1
4   0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow 1.569367e 05    1
5   0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow 1.219739e 04    2

As you can see, the count of epochs restarts when a row with a new address appears.

How can I create a logic for that column for any given number of addresses/rows?

Additionally: is there anything I should watch out for when structuring the DataFrame? E.G., always grouping equal addresses and not having them appear in random places in the DataFrame.

CodePudding user response:

Use groupby with cumcount:

  1. If you want the count to continue if an address re-occurs later:
df["Epoch"] = df.groupby("Index").cumcount() 1

>>> df
                                        Index     type     amount  Epoch
0  0xd81c0B4FEA284c908C5700187a67698b416a6bcc  outflow   25538.00      1
1  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow  199965.00      2
2  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow   38964.00      3
3  0x0A5E7C50eA6BB695F2f4e75D97D3381592B59C9F   inflow  306000.00      1
4  0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow  156936.70      1
5  0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow   12197.39      2
6  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow  199965.00      4
7  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow   38964.00      5
  1. If you want the count to re-start at 1 for the address that re-occurs:
df["Epoch"] = df.groupby((df["Index"]!=df["Index"].shift()).cumsum()).cumcount() 1

>>> df
                                        Index     type     amount  Epoch
0  0xd81c0B4FEA284c908C5700187a67698b416a6bcc  outflow   25538.00      1
1  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow  199965.00      2
2  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow   38964.00      3
3  0x0A5E7C50eA6BB695F2f4e75D97D3381592B59C9F   inflow  306000.00      1
4  0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow  156936.70      1
5  0x2Eec494429E253938A10b2A9eCAD8ee7F603e4Af  outflow   12197.39      2
6  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow  199965.00      1
7  0xd81c0B4FEA284c908C5700187a67698b416a6bcc   inflow   38964.00      2

Note the difference in output in the last two rows. I copied the second and third rows of your example to the end of the DataFrame to illustrate the difference in the two methods.

  • Related