I am iterating a function over columns in a dataframe as follows:
for name, column in train_set.iteritems():
adfuller_test(column, name=column.name)
I want to save the output of these iterations to an external file, either .txt or .pdf formats. I found this method to create PDF files from a script:
import fpdf
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=print(), ln=1, align="C")
pdf.output("Augmented Dickey Fuller Test.pdf")
However, how can I bring the output of the for loop inside txt
? I tried storing the results of the loop in a list using list.append
, but unfortunately the adfuller_test
function returns NoneType objects.
UPDATE: The adfuller_test
performs an Augmented Dickey Fuller test on time series data. The function is defined as:
def adfuller_test(series, signif=0.05, name='', verbose=False):
"""Perform ADFuller to test for Stationarity of given series and print report"""
r = adfuller(series, autolag='AIC')
output = {'test_statistic':round(r[0], 4), 'pvalue':round(r[1], 4), 'n_lags':round(r[2], 4), 'n_obs':r[3]}
p_value = output['pvalue']
def adjust(val, length= 6): return str(val).ljust(length)
print(f' Augmented Dickey-Fuller Test on "{name}"', "\n ", '-'*47)
print(f' Null Hypothesis: Data has unit root. Non-Stationary.')
print(f' Significance Level = {signif}')
print(f' Test Statistic = {output["test_statistic"]}')
print(f' No. Lags Chosen = {output["n_lags"]}')
for key,val in r[4].items():
print(f' Critical value {adjust(key)} = {round(val, 3)}')
if p_value <= signif:
print(f" => P-Value = {p_value}. Rejecting Null Hypothesis.")
print(f" => Series is Stationary.")
else:
print(f" => P-Value = {p_value}. Weak evidence to reject the Null Hypothesis.")
print(f" => Series is Non-Stationary.")
and when run on a series it prints the following output (example):
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic = -0.5388
No. Lags Chosen = 2
Critical value 1% = -3.437
Critical value 5% = -2.864
Critical value 10% = -2.568
=> P-Value = 0.8842. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
The script loops over a DataFrame with 30 columns and therefore returns 30 such outputs. What I would like to do is store these outputs in a file as they are printed in the terminal window. The file format does not matter, a .txt file would work as well.
CodePudding user response:
You can change the function adfuller_test
in this way to return the description as a string instead of printing it to the console:
def adfuller_test(series, signif=0.05, name='', verbose=False):
"""Perform ADFuller to test for Stationarity of given series and print report"""
description = []
r = adfuller(series, autolag='AIC')
output = {'test_statistic':round(r[0], 4), 'pvalue':round(r[1], 4), 'n_lags':round(r[2], 4), 'n_obs':r[3]}
p_value = output['pvalue']
def adjust(val, length= 6): return str(val).ljust(length)
description.append(f' Augmented Dickey-Fuller Test on "{name}"\n {"-"*47}')
description.append(f' Null Hypothesis: Data has unit root. Non-Stationary.')
description.append(f' Significance Level = {signif}')
description.append(f' Test Statistic = {output["test_statistic"]}')
description.append(f' No. Lags Chosen = {output["n_lags"]}')
for key,val in r[4].items():
description.append(f' Critical value {adjust(key)} = {round(val, 3)}')
if p_value <= signif:
description.append(f" => P-Value = {p_value}. Rejecting Null Hypothesis.")
description.append(f" => Series is Stationary.")
else:
description.append(f" => P-Value = {p_value}. Weak evidence to reject the Null Hypothesis.")
description.append(f" => Series is Non-Stationary.")
description = "\n".join(description)
print(description)
return description
This basically instantiate a list, stores all description strings and concatenate them line by line.
Saving this to a txt file is simple:
from pathlib import Path
description = []
for name, column in train_set.iteritems():
description.append(adfuller_test(column, name=column.name))
description = "\n\n".join(description)
Path("output_file_name.txt").write_text(description)