Home > Enterprise >  python equivalence to Matlab flattening
python equivalence to Matlab flattening

Time:10-07

I'm trying to convert this code from matlab to python:

Matlab

 lP =lP(:)/length(lP(:));
  lM=lM(:)/length(lP(:));

My try:

lP=ravel(lP) / length(ravel(lP))
lM=ravel(lM) / length(ravel(lP))

Unfortunately, it seems that the flattening process ended in an incompatible way: Matlab ended with: lP =

                     0
                     0
      282.158675652645
      245.206579787908
      180.857334994335
      145.295985608783
      98.6111323759356
      78.6541285064253
                     0
                     0
      235.988440426672
      252.705377114354
      149.700677619887
      149.441877249856
      94.6327116403152
      84.5507642298126
       201.33034579544
        168.5504445176
      112.020019512079
      100.029337003081
      81.9696997469859
      77.2791884039185
      53.8857894853351
      47.1052112310254
      201.005392514542
      170.334647413678
      102.794197425736
      117.624998880039
      63.5474961850914
      85.6855606877716
      40.2032122529948
      55.9023649432995
      113.662165613052
      105.200545764806
       66.249378944203
      60.9266562306452
      46.1411501598512
      44.4884016760164
      31.2403038422145
      31.8768645697115
      96.6943687173171
      94.3667944720464
      63.9090790984522
      63.4837480098802
       43.801313157197
      47.5765809365761
      27.4423759004399
      31.6859217744796
      74.7724121990454
       66.780700287442
      35.6152335123858
      37.2132749966295
      27.2233609912034
      28.2363756837094
      18.7629642336031
       19.217036195859
      55.1857268319806
      49.2057110093965
      35.3827383680906
      33.9961168439708
      26.0418645945658
      26.2135571149649
      17.8586181284183
      18.6567862728906

while python ended with lP=:

    [[  0.        ],
   [  0.        ],
   [282.15867565],
   [245.20657979],
   [ 35.61523351],
   [ 37.213275  ],
   [ 74.7724122 ],
   [ 66.78070029],
   [  0.        ],
   [  0.        ],
   [235.98844043],
   [252.70537711],
   [ 35.38273837],
   [ 33.99611684],
   [ 55.18572683],
   [ 49.20571101],
   [201.3303458 ],
   [168.55044452],
   [112.02001951],
   [100.029337  ],
   [ 66.24937894],
   [ 60.92665623],
   [113.66216561],
   [105.20054576],
   [201.00539251],
   [170.33464741],
   [102.79419743],
   [117.62499888],
   [ 63.9090791 ],
   [ 63.48374801],
   [ 96.69436872],
   [ 94.36679447],
   [ 53.88578949],
   [ 47.10521123],
   [ 81.96969975],
   [ 77.2791884 ],
   [ 46.14115016],
   [ 44.48840168],
   [ 31.24030384],
   [ 31.87686457],
   [ 40.20321225],
   [ 55.90236494],
   [ 63.54749619],
   [ 85.68556069],
   [ 43.80131316],
   [ 47.57658094],
   [ 27.4423759 ],
   [ 31.68592177],
   [ 98.61113238],
   [ 78.65412851],
   [180.85733499],
   [145.29598561],
   [ 27.22336099],
   [ 28.23637568],
   [ 18.76296423],
   [ 19.2170362 ],
   [ 94.63271164],
   [ 84.55076423],
   [149.70067762],
   [149.44187725],
   [ 26.04186459],
   [ 26.21355711],
   [ 17.85861813],
   [ 18.65678627]]

It seems as python made a different choice of the block flattening, does anyone see how can I reach the same results of matlab with python?

CodePudding user response:

The most likely issue is array ordering. Numpy uses row-major (C-style) ordering by default, while MATLAB only supports column-major (Fortran-style). So this should work:

lP=ravel(lP, 'F') / length(ravel(lP))
lM=ravel(lM, 'F') / length(ravel(lP))

However, numpy attaches a lot of stuff directly to the arrays, so this syntax is cleaner:

lP = lP.ravel('F') / length(lP.ravel())
lM = lM.ravel('F') / length(lP.ravel())

And the length of the flattened array is just its .size, so it can be further simplified as:

lP = lP.ravel('F') / lP.size
lM = lM.ravel('F') / lP.size
  • Related