say:
m = 170000 , v = -(m/100)
{'01-09-2021': 631, '02-09-2021': -442, '08-09-2021': 6, '09-09-2021': 1528, '13-09-2021': 2042, '14-09-2021': 1098, '15-09-2021': -2092, '16-09-2021': -6718, '20-09-2021': -595, '22-09-2021': 268, '23-09-2021': -2464, '28-09-2021': 611, '29-09-2021': -1700, '30-09-2021': 4392}
I want to replace values in column 'Final' with v if the value is less than v, else keep the original value. Tried numpy.where , df.loc etc but didn't work.
CodePudding user response:
Your can use clip
:
df['Final'] = df['Final'].clip(-1700)
print(df)
# Output:
Date Final
0 01-09-2021 631
1 02-09-2021 -442
2 08-09-2021 6
3 09-09-2021 1528
4 13-09-2021 2042
5 14-09-2021 1098
6 15-09-2021 -1700
7 16-09-2021 -1700
8 20-09-2021 -595
9 22-09-2021 268
10 23-09-2021 -1700
11 28-09-2021 611
12 29-09-2021 -1700
13 30-09-2021 4392
Or the classical np.where
:
df['Final'] = np.where(df['Final'] < -1700, -1700, df['Final'])
Setup:
df = pd.DataFrame({'Date': d.keys(), 'Final': d.values()})
CodePudding user response:
You can try:
df.loc[df['Final']<v, 'Final'] = v
Output:
Date Final
0 01-09-2021 631
1 02-09-2021 -442
2 08-09-2021 6
3 09-09-2021 1528
4 13-09-2021 2042
5 14-09-2021 1098
6 15-09-2021 -1700
7 16-09-2021 -1700
8 20-09-2021 -595
9 22-09-2021 268
10 23-09-2021 -1700
11 28-09-2021 611
12 29-09-2021 -1700
13 30-09-2021 4392