I had an original dataset that looks like this.:
> df.1
id score
1 13_B 1
2 13_C 4
3 133_D 5
4 141 2
5 145 3
6 143 4
7 12_B 6
8 12_C 7
9 12_D 9
I needed to do some process that needs all the id
s numeric therefore I recoded _B|_C|_D
into 1|2|3
.
After I finished some processed on the dataset having an extra group
column, Here is how my sample dataset looks like:
df.2 <- data.frame(id = c("131","132","133", "141", "145", "143", "121","122","123"),
score = c(1,4,5,2,3,4,6,7,9),
group = c(5,5,5,4,4,4,3,3,3))
> df.2
id score group
1 131 1 5
2 132 4 5
3 133 5 5
4 141 2 4
5 145 3 4
6 143 4 4
7 121 6 3
8 122 7 3
9 123 9 3
At this point, I need to convert the ids
back to the original for those items = c(12,13,15)
. So 15
is not in this dataset but need something that works globally. My desired output is:
> df.3
id score group
1 13_B 1 5
2 13_C 4 5
3 13_D 5 5
4 141 2 4
5 145 3 4
6 143 4 4
7 12_B 6 3
8 12_C 7 3
9 12_D 9 3
Any ideas?
Thanks!
CodePudding user response:
Use str_replace_all
to recode the substring replacement by passing a named vector (setNames
)
library(dplyr)
library(stringr)
df.1 %>%
mutate(id1 = as.numeric(str_replace_all(str_replace(id, "^(\\d{2})\\d _(.*)",
"\\1_\\2"), setNames(as.character(c(1, 2, 3)), c("_B", "_C", "_D")))))
-output
id score id1
1 13_B 1 131
2 13_C 4 132
3 133_D 5 133
4 141 2 141
5 145 3 145
6 143 4 143
7 12_B 6 121
8 12_C 7 122
9 12_D 9 123
For replacing from 'df.2'
df.2 %>%
mutate(id2 = case_when(substr(id, 1, 2) %in% c(12, 13, 15) ~
str_replace_all(as.character(id), setNames(c("_B", "_C", "_D"),
str_c(1:3, "$"))), TRUE ~as.character(id)))
-output
id score group id2
1 131 1 5 13_B
2 132 4 5 13_C
3 133 5 5 13_D
4 141 2 4 141
5 145 3 4 145
6 143 4 4 143
7 121 6 3 12_B
8 122 7 3 12_C
9 123 9 3 12_D
data
df.1 <- structure(list(id = c("13_B", "13_C", "133_D", "141", "145",
"143", "12_B", "12_C", "12_D"), score = c(1L, 4L, 5L, 2L, 3L,
4L, 6L, 7L, 9L)), row.names = c("1", "2", "3", "4", "5", "6",
"7", "8", "9"), class = "data.frame")
CodePudding user response:
You may try this:
df.2 %>%
group_by(group) %>%
mutate(group_id=row_number(),
x= paste0("_", LETTERS[2:4])) %>%
mutate(id2 = ifelse(!str_detect(id,"14"), paste0(str_sub(id,1,2),x),id)) %>%
select(id, id2, score, group)
id id2 score group
<chr> <chr> <dbl> <dbl>
1 131 13_B 1 5
2 132 13_C 4 5
3 133 13_D 5 5
4 141 141 2 4
5 145 145 3 4
6 143 143 4 4
7 121 12_B 6 3
8 122 12_C 7 3
9 123 12_D 9 3