My dataframe has 2 columns which look similar to this:
a b
NA NA
yes NA
no NA
yes NA
NA yes
NA no
NA NA
Na yes
What I would then like as output is:
ab
NA
yes
no
yes
yes
no
NA
yes
Note that:
- In the original columns, there will always be an NA in any given row.
- For certain rows both columns will be NA
Any idea how I could get to the desired output?
CodePudding user response:
dplyr::coalesce
> with(dat, dplyr::coalesce(a, b))
[1] NA "yes" "no" "yes" "yes" "no" NA "yes"
ifelse
for base R
> with(dat, ifelse(!is.na(a), a, ifelse(!is.na(b), b, NA)))
[1] NA "yes" "no" "yes" "yes" "no" NA "yes"
max.col
for base R
> dat[cbind(1:nrow(dat), max.col(!is.na(dat)))]
[1] NA "yes" "no" "yes" "yes" "no" NA "yes"
CodePudding user response:
Using dplyr
you can wrap it pretty neatly:
library(dplyr)
df %>% rowwise() %>% summarize(ab = max(a,b, na.rm = T))
CodePudding user response:
dat <- data.frame(a = c(NA, "yes", "no", "yes", NA, NA, NA, NA),
b = c(NA, NA, NA, NA, "yes", "no", NA, "yes"))
require(tidyverse)
dat %>%
rowwise() %>%
mutate(ab = max(a,b, na.rm = TRUE))
CodePudding user response:
Use apply
:
> apply(df, 1, max, na.rm=TRUE)
[1] NA "yes" "no" "yes" "yes" "no" NA "yes"
Assignment:
df$ab <- apply(df, 1, max, na.rm=TRUE)
CodePudding user response:
# Import data: df => data.frame
df <- structure(list(a = c(NA, "yes", "no", "yes", NA, NA, NA, NA),
b = c(NA, NA, NA, NA, "yes", "no", NA, "yes")), class = "data.frame", row.names = c(NA,
-8L))
# Function to coalesce vectors: br_coalesce => function
br_coalesce <- function(...){
# Coalesce vectors or data.frames: res => vector
res <- Reduce(function(x, y) {
x <- replace(x, is.na(x), y[is.na(x)])
},
list(...)
)
# Explicitly define returned vectors: character vector => env
return(res)
}
# Apply function: character vector / data.frame => stdout(console)
br_coalesce(df$a, df$b)
Tidyverse solution:
library(tidyverse)
df %>%
transmute(res = coalesce(a, b))
data.table solution:
library(data.table)
fcoalesce(df$a, df$b)