I have to convert data from a SQL table to pandas and display the output. The data is a sales table:
cust prod day month year state quant
0 Bloom Pepsi 2 12 2017 NY 4232
1 Knuth Bread 23 5 2017 NJ 4167
2 Emily Pepsi 22 1 201 CT 4404
3 Emily Fruits 11 1 2010 NJ 4369
4 Helen Milk 7 11 2016 CT 210
I have to convert this to find average sales for each customer for each state for year 2017:
CUST AVG_NY AVG_CT AVG_NJ
Bloom 28923 3241 1873
Sam 4239 872 142
Below is my code:
import pandas as pd
import psycopg2 as pg
engine = pg.connect("dbname='postgres' user='postgres' host='127.0.0.1' port='8800' password='sh'")
df = pd.read_sql('select * from sales', con=engine)
df.drop("prod", axis=1, inplace=True)
df.drop("day", axis=1, inplace=True)
df.drop("month", axis=1, inplace=True)
df_main = df.loc[df.year == 2017]
#df.drop(df[df['state'] != 'NY'].index, inplace=True)
df2 = df_main.loc[df_main.state == 'NY']
df2.drop("year",axis=1,inplace=True)
NY = df2.groupby(['cust']).mean()
df3 = df_main.loc[df_main.state == 'CT']
df3.drop("year",axis=1,inplace=True)
CT = df3.groupby(['cust']).mean()
df4 = df_main.loc[df_main.state == 'NJ']
df4.drop("year",axis=1,inplace=True)
NJ = df4.groupby(['cust']).mean()
NY = NY.join(CT,how='left',lsuffix = 'NY', rsuffix = '_right')
NY = NY.join(NJ,how='left',lsuffix = 'NY', rsuffix = '_right')
print(NY)
This give me an output like:
quantNY quant_right quant
cust
Bloom 3201.500000 3261.0 2277.000000
Emily 2698.666667 1432.0 1826.666667
Helen 4909.000000 2485.5 2352.166667
I found a question where I can change the column names to the output I need but I am not sure if the below two lines of the code are the right way to join the dataframes:
NY = NY.join(CT,how='left',lsuffix = 'NY', rsuffix = '_right')
NY = NY.join(NJ,how='left',lsuffix = 'NY', rsuffix = '_right')
Is there a better way of doing this with Pandas?
CodePudding user response:
Use pivot_table
:
df.pivot_table(index=['year', 'cust'], columns='state',
values='quant', aggfunc='mean').add_prefix('AVG_')