Home > Enterprise >  How to get matrix of pairwise distance with given ndarray of coordinates using only numpy
How to get matrix of pairwise distance with given ndarray of coordinates using only numpy

Time:10-25

I have point_coords ndarray:

point_coord_x = np.array([np.random.randint(low=-100, high=100) for i in range(40)])
point_coord_y = np.array([np.random.randint(low=-100, high=100) for i in range(40)])
point_coords = np.array([point_coord_x, point_coord_y]).transpose()

It looks like:

point_coords
array([[  62,  -31],
       [  49,   33],
       [  -2,  -86],
       [ -29,   49],
        ...

I want to get a square matrix with distance between points. How am I supposed to do it?

CodePudding user response:

>>> from scipy.spatial import distance_matrix
>>> distance_matrix(point_coords, point_coords)
array([[  0.        , 149.21461054,  88.64536085, ...,  44.94441011,  24.73863375,  60.5309838 ],
       [149.21461054,   0.        , 122.64175472, ..., 136.47344064, 163.60012225, 201.07958623],
       [ 88.64536085, 122.64175472,   0.        , ...,  45.01110974, 113.35784049, 147.2752525 ],
       ...,
       [ 44.94441011, 136.47344064,  45.01110974, ...,   0.        ,  69.57010852, 102.3132445 ],
       [ 24.73863375, 163.60012225, 113.35784049, ...,  69.57010852,   0.        ,  38.62641583],
       [ 60.5309838 , 201.07958623, 147.2752525 , ..., 102.3132445 ,  38.62641583,   0.        ]])

If only numpy is to be used:

np.linalg.norm(point_coords[:, None, :] - point_coords[None, :, :], axis=-1)

CodePudding user response:

You can do it using solely Numpy:

Compute deltas by each coordinate (square matrices):

dx = point_coord_x[:, np.newaxis] - point_coord_x[np.newaxis, :]
dy = point_coord_y[:, np.newaxis] - point_coord_y[np.newaxis, :]

Then compute the distance array from these deltas:

result = np.sqrt(dx ** 2   dy ** 2)
  • Related