Home > Enterprise >  Why low mAP on fine-tuned model from Tensorflow 2 Object Detection API?
Why low mAP on fine-tuned model from Tensorflow 2 Object Detection API?

Time:11-08

I follow all the steps and read everything online and I trained successfully SSD-MobileNetV1 from Model Zoo of TF2 OD API.

I fine-tuned this model with new classes "Handgun" and "Knife" and I use a balanced dataset of 3500 images. The training proceeds well, but when I run the evaluation process (for validation) with "pascal_voc_detection_metrics" I achieved 0.005 [email protected] (The detection model manages to reach only 0.005 more or less of AP) with the class "Handgun" which is very low, but 0.93 [email protected] with the class "Knife".

I didn't understand why. I really read everything but I can't find the solution.

config of SDD-MobileNetV1:

model {
  ssd {
    num_classes: 2
    image_resizer {
      fixed_shape_resizer {
        height: 640
        width: 640
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v1_fpn_keras"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 4e-05
          }
        }
        initializer {
          random_normal_initializer {
            mean: 0.0
            stddev: 0.01
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.997
          scale: true
          epsilon: 0.001
        }
      }
      override_base_feature_extractor_hyperparams: true
      fpn {
        min_level: 3
        max_level: 7
      }
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      weight_shared_convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 4e-05
            }
          }
          initializer {
            random_normal_initializer {
              mean: 0.0
              stddev: 0.01
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.997
            scale: true
            epsilon: 0.001
          }
        }
        depth: 256
        num_layers_before_predictor: 4
        kernel_size: 3
        class_prediction_bias_init: -4.6
      }
    }
    anchor_generator {
      multiscale_anchor_generator {
        min_level: 3
        max_level: 7
        anchor_scale: 4.0
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        scales_per_octave: 2
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-08
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
        use_static_shapes: false
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid_focal {
          gamma: 2.0
          alpha: 0.25
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    encode_background_as_zeros: true
    normalize_loc_loss_by_codesize: true
    inplace_batchnorm_update: true
    freeze_batchnorm: false
  }
}
train_config {
  batch_size: 4
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    random_crop_image {
      min_object_covered: 0.0
      min_aspect_ratio: 0.75
      max_aspect_ratio: 3.0
      min_area: 0.75
      max_area: 1.0
      overlap_thresh: 0.0
    }
  }
  sync_replicas: true
  optimizer {
    momentum_optimizer {
      learning_rate {
        cosine_decay_learning_rate {
          learning_rate_base: 0.04
          total_steps: 25000
          warmup_learning_rate: 0.013333
          warmup_steps: 2000
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  fine_tune_checkpoint: "pre-trained-models/ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8/checkpoint/ckpt-0"
  num_steps: 25000
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  fine_tune_checkpoint_type: "detection"
  fine_tune_checkpoint_version: V2
}
train_input_reader {
  label_map_path: "/annotations/label_map.pbtxt"
  tf_record_input_reader {
    input_path: "/annotations/train.record"
  }
}
eval_config {
  metrics_set: "pascal_voc_detection_metrics"
  use_moving_averages: false
  batch_size: 1
}
eval_input_reader {
  label_map_path: "/annotations/label_map.pbtxt"
  shuffle: false
  num_epochs: 1
  tf_record_input_reader {
    input_path: "/annotations/validation.record"
  }
}

I trained and evaluated with model_main_tf2.py and I used roboflow to transform my images in TFRecords.

CodePudding user response:

It's a bug of the library as reported at this link. COCO metrics don't have this problem, so use it to evaluate your model. The problem is not fixed yet. If you want to follow updates made to the code(they work fine) please follow the previous link and also this link

  • Related