I have two dataframes with the same headers.
When I try to concatenate (pd.concat()
) these two dfs (df1, df2), I get the error:
"InvalidIndexError: Reindexing only valid with uniquely valued Index objects"
I figured out that the problem is that there are duplicate column names within each dataframe. Example:
df1
respondent ID - Column1 - Column2 - Column3 - Column1 - Column2 - Column3
df2
respondent ID - Column1 - Column2 - Column3 - Column1 - Column2 - Column3
in theory, I just want to add the data of df2 below df1 (without the headers of df2 ofc)
How do I bypass this? Any thoughts?
CodePudding user response:
You can use this solution:
df1 = df1.append(df2, ignore_index=True)
CodePudding user response:
The duplicated columns shouldn't be an issue (even with ignore_index=False
):
df1 = pd.DataFrame([range(7)], columns=['respondent ID', 'Column1', 'Column2', 'Column3', 'Column1', 'Column2', 'Column3'])
df2 = pd.DataFrame([['2']*7], columns=['respondent ID', 'Column1', 'Column2', 'Column3', 'Column1', 'Column2', 'Column3'])
pd.concat([df1, df2], ignore_index=True)
output:
respondent ID Column1 Column2 Column3 Column1 Column2 Column3
0 0 1 2 3 4 5 6
1 2 2 2 2 2 2 2