I have two Sparks dataframes:
df1
with one entry per id
and date
:
|date |id |
----------- -----
|2021-11-15 | 1|
|2021-11-14 | 1|
|2021-11-15 | 2|
|2021-11-14 | 2|
|2021-11-15 | 3|
|2021-11-14 | 3|
df2
with multiple log entries:
|date |id |
----------- -----
|2021-11-13 | 1|
|2021-11-13 | 1|
|2021-11-13 | 3|
|2021-11-14 | 1|
|2021-11-14 | 1|
|2021-11-14 | 1|
|2021-11-14 | 1|
|2021-11-15 | 1|
|2021-11-15 | 1|
how can I join these dfs, so that I get the most recent possible entry (date(df2) should be <= date) per id
and date
of df2
?
|date |id | date(df2)|
----------- ------ ------------
|2021-11-15 | 1 | 2021-11-15 |
|2021-11-14 | 1 | 2021-11-14 |
|2021-11-15 | 2 | null |
|2021-11-14 | 2 | null |
|2021-11-15 | 3 | 2021-11-13 |
|2021-11-14 | 3 | 2021-11-13 |
THX Into Numbers
CodePudding user response:
Use join then group by df1.id
and df2.date
and use conditional aggregation to get max df2.date <= df1.date
import pyspark.sql.functions as F
result_df = df1.join(
df2.withColumnRenamed("date", "df2_date"),
["id"],
"left"
).groupBy("id", "date").agg(
F.max(
F.when(F.col("df2_date") <= F.col("date"), F.col("df2_date"))
).alias("df2_date")
)
result_df.show()
# --- ---------- ----------
#| id| date| df2_date|
# --- ---------- ----------
#| 1|2021-11-14|2021-11-14|
#| 1|2021-11-15|2021-11-15|
#| 2|2021-11-14| null|
#| 2|2021-11-15| null|
#| 3|2021-11-14|2021-11-13|
#| 3|2021-11-15|2021-11-13|
# --- ---------- ----------