I have a function that computes a table and a model (and more...):
fun <- function(x, y, formula = y ~ x, data = NULL) {
out <- list()
out$tab <- table(x, y)
out$mod <- glm(formula = formula,
family = binomial,
data = data)
out
}
In the formula, I need to use x
and y
as provided in the function call (e.g. x = DF1$x
and y = DF1$y
) and variables from another data frame (e.g. a
and b
from DF2
). It fails with my naive function:
fun(x = DF1$x,
y = DF1$y,
formula = y ~ x a b,
data = DF2)
# Error in eval(predvars, data, env) : object 'y' not found
How can I make glm search x
and y
from the function environment? I guess this issue is related to non-standard evaluation and/or scoping, but I have no idea how to fix it.
Data for the example:
smp <- function(x = c(TRUE, FALSE),
size = 1e2) {
sample(x = x,
size = size,
replace = TRUE)
}
DF1 <- data.frame(x = smp(),
y = smp())
DF2 <- data.frame(a = smp(x = LETTERS),
b = smp(x = LETTERS))
CodePudding user response:
Why not just add x
and y
into data
in the function?
fun <- function(x, y, formula = y ~ x, data = NULL) {
if(length(x) != length(y) |
length(x) != nrow(data) |
length(y) != nrow(data))stop("x, y and data need to be the same length.\n")
data$x <- x
data$y <- y
out <- list()
out$tab <- table(x, y)
out$mod <- glm(formula = formula,
family = binomial,
data = data)
out
}
fun(x = DF1$x,
y = DF1$y,
formula = y ~ x a b,
data = DF2)
# $tab
# y
# x FALSE TRUE
# FALSE 27 29
# TRUE 21 23
#
# $mod
# Call: glm(formula = formula, family = binomial, data = data)
#
# Coefficients:
# (Intercept) xTRUE aB aC aD aE aF aG aH aI aJ
# 3.2761 -1.8197 0.3409 -93.9103 -2.0697 20.6813 -41.5963 -1.1078 18.5921 -1.0857 -36.5442
# aK aL aM aN aO aP aQ aR aS aT aU
# -0.5730 -92.5513 -3.0672 22.8989 -53.6200 -0.9450 0.4626 -3.0672 0.3570 -22.8857 1.8867
# aV aW aX aY aZ bB bC bD bE bF bG
# 2.5307 19.5447 -90.5693 -134.0656 -2.5943 -1.2333 20.7726 110.6790 17.1022 -0.5279 -1.2537
# bH bI bJ bK bL bM bN bO bP bQ bR
# -21.7750 114.0199 20.3766 -42.5031 41.1757 -24.3553 -2.0310 -25.9223 -2.9145 51.2537 70.2707
# bS bT bU bV bW bX bY bZ
# -4.7728 -3.7300 -2.0333 -0.3906 -0.5717 -4.0728 0.8155 -4.4021
#
# Degrees of Freedom: 99 Total (i.e. Null); 48 Residual
# Null Deviance: 138.5
# Residual Deviance: 57.73 AIC: 161.7
#
# Warning message:
# glm.fit: fitted probabilities numerically 0 or 1 occurred
#