I am trying to get the minimum value of a date variable when the principal balance is below 5% of the disbursement amount. I want this to be extracted by account number, but I don't want a new df that is grouped by account number.
My df looks like this:
| account_number | period_date | principal_balance_amt | disbursement_amt |
| -------------: | ----------- | --------------------- | ---------------- |
| 1 | 2021-01-01 | 10 | 100 |
| 1 | 2021-02-01 | 6 | 100 |
| 1 | 2021-03-01 | 3 | 100 |
| 1 | 2021-04-01 | 0 | 100 |
| 2 | 2021-01-01 | 20 | 100 |
| 2 | 2021-02-01 | 15 | 100 |
| 2 | 2021-03-01 | 11 | 100 |
| 2 | 2021-04-01 | 8 | 100 |
I have tried codes similar to this to make it work but it just return invalid syntax.
df['churn_date'] = df.loc[groupby('account_number').(df['principal_balance_amt'] <= 0.05 * df['disbursement_amt']), 'period_date'].min()
I want the code to create a df that looks like this:
account_number | period_date | principal_balance_amt | disbursement_amt | churn_date |
---|---|---|---|---|
1 | 2021-01-01 | 10 | 100 | 2021-03-01 |
1 | 2021-02-01 | 6 | 100 | 2021-03-01 |
1 | 2021-03-01 | 3 | 100 | 2021-03-01 |
1 | 2021-04-01 | 0 | 100 | 2021-03-01 |
2 | 2021-01-01 | 20 | 100 | nan |
2 | 2021-02-01 | 15 | 100 | nan |
2 | 2021-03-01 | 11 | 100 | nan |
2 | 2021-04-01 | 8 | 100 | nan |
CodePudding user response:
Use Series.where
for replace period_date
to NaN
if no match and then use GroupBy.transform
with min
for new column:
mask = (df['principal_balance_amt'] <= 0.05 * df['disbursement_amt'])
df['churn_date'] = (df.assign(new = df['period_date'].where(mask))
.groupby('account_number')['new']
.transform('min'))
print (df)
account_number period_date principal_balance_amt disbursement_amt \
0 1 2021-01-01 10 100
1 1 2021-02-01 6 100
2 1 2021-03-01 3 100
3 1 2021-04-01 0 100
4 2 2021-01-01 20 100
5 2 2021-02-01 15 100
6 2 2021-03-01 11 100
7 2 2021-04-01 8 100
churn_date
0 2021-03-01
1 2021-03-01
2 2021-03-01
3 2021-03-01
4 NaT
5 NaT
6 NaT
7 NaT
Alternative solution with mapping by Series.map
only filtered rows by boolean indexing
with aggregate min
:
mask = (df['principal_balance_amt'] <= 0.05 * df['disbursement_amt'])
s = df[mask].groupby('account_number')['period_date'].min()
df['churn_date'] = df['account_number'].map(s)