Consider looping through my DataFrame:
import pandas as pd
df = pd.DataFrame({
'Price': [1000, 1000, 1000, 2000, 2000, 2000, 2000, 1400, 1400],
'Count': [0, 0, 0, 0, 0, 0, 0, 0, 0]
})
for idx in df.index:
if df['Price'].iloc[idx] > 1500:
if idx > 0:
df['Count'].iloc[idx] = df['Count'].iloc[idx - 1] 1
Resulting in:
Price | Count | |
---|---|---|
0 | 1000 | 0 |
1 | 1000 | 0 |
2 | 1000 | 0 |
3 | 2000 | 1 |
4 | 2000 | 2 |
5 | 2000 | 3 |
6 | 2000 | 4 |
7 | 1400 | 0 |
8 | 1400 | 0 |
Is there a more efficient way to do this?
CodePudding user response:
Use mask
to hide values below 1500 and use cumsum
to create the counter:
df['Count'] = df.mask(df['Price'] <= 1500)['Count'].add(1).cumsum().fillna(0).astype(int)
print(df)
# Output:
Price Count
0 1000 0
1 1000 0
2 1000 0
3 2000 1
4 2000 2
5 2000 3
6 2000 4
7 1400 0
8 1400 0
CodePudding user response:
Create pseudo-groups using Series.cumsum
, then use groupby.cumcount
to generate the within-group counts:
groups = df.Price.le(1500).cumsum()
df['Count'] = df.Price.gt(1500).groupby(groups).cumcount()
# Price Count
# 0 1000 0
# 1 1000 0
# 2 1000 0
# 3 2000 1
# 4 2000 2
# 5 2000 3
# 6 2000 4
# 7 1400 0
# 8 1400 0