I am trying to create a DataFrame like so:
col_a | col_b |
---|---|
{'soln_a'} | {'soln_b'} |
In case it helps, here are some of my failed attempts:
import pandas as pd
my_dict_a = {"col_a": set(["soln_a"]), "col_b": set("soln_b")}
df_0 = pd.DataFrame.from_dict(my_dict_a) # ValueError: All arrays must be of the same length
df_1 = pd.DataFrame.from_dict(my_dict_a, orient="index").T # splits 'soln_b' into individual letters
my_dict_b = {"col_a": ["soln_a"], "col_b": ["soln_b"]}
df_2 = pd.DataFrame(my_dict_b).apply(set) # TypeError: 'set' type is unordered
df_3 = pd.DataFrame.from_dict(my_dict_b, orient="index").T # creates DataFrame of lists
df_3.apply(set, axis=1) # combines into single set of {soln_a, soln_b}
What's the best way to do this?
CodePudding user response:
You just need to ensure your input data structure is formatted correctly.
The (default) dictionary -> DataFrame constructor, asks for the values in the dictionary be a collection of some type. You just need to make sure you have a collection of set objects, instead of having the key link directly to a set.
So, if I change my input dictionary to have a list of sets, then it works as expected.
import pandas as pd
my_dict = {
"col_a": [{"soln_a"}, {"soln_c"}],
"col_b": [{"soln_b", "soln_d"}, {"soln_c"}]
}
df = pd.DataFrame.from_dict(my_dict)
print(df)
col_a col_b
0 {soln_a} {soln_d, soln_b}
1 {soln_c} {soln_c}
CodePudding user response:
You could apply
a list comprehension on the columns:
my_dict_b = {"col_a": ["soln_a"], "col_b": ["soln_b"]}
df_2 = pd.DataFrame(my_dict_b)
df_2 = df_2.apply(lambda col: [set([x]) for x in col])
Output:
col_a col_b
0 {soln_a} {soln_b}
CodePudding user response:
Why not something like this?
df = pd.DataFrame({
'col_a': [set(['soln_a'])],
'col_b': [set(['soln_b'])],
})
Output:
>>> df
col_a col_b
0 {soln_a} {soln_b}