Home > Enterprise >  AttributeError: 'list' object has no attribute 'view' while training network
AttributeError: 'list' object has no attribute 'view' while training network

Time:02-26

I have a pytorch which i am trying to train but i am getting this error AttributeError: 'list' object has no attribute 'view'. Dont know why i am getting this.

sample data

data = np.random.rand(400, 46, 55, 46)
ds = TensorDataset(torch.from_numpy(data))
train_ds, valid_ds = random_split(ds, (350, 50))
train_dl, valid_dl = DataLoader(train_ds), DataLoader(valid_ds)

model

class AutoEncoder(pl.LightningModule):
  def __init__(self):
    super(AutoEncoder, self).__init__()
    self.encoder = nn.Sequential(
        nn.Linear(46*55*46, 400),
        nn.Tanh())
    self.decoder = nn.Sequential(
        nn.Linear(400, 46*55*46),
        nn.Sigmoid())
    
  def forward(self, x):
    x = self.encoder(x)
    x = self.decoder(x)
    return x

  def configure_optimizers(self):
    optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
    return optimizer

  def training_step(self, train_batch, batch_idx):
    x = train_batch
    x = x.view(x.size(0), -1)
    z = self.encoder(x)
    x_hat = self.decoder(z)
    loss = F.mse_loss(x_hat, x)
    self.log('train_loss', loss)
    return loss

  def validation_step(self, val_batch, batch_idx):
    x = val_batch
    x = x.view(x.size(0), -1)
    z = self.encoder(x)
    x_hat = self.decoder(z)
    loss = F.mse_loss(x_hat, x)
    self.log('val_loss', loss)  
model = AutoEncoder()

Error

AttributeError                            Traceback (most recent call last)

<ipython-input-18-11e725b78922> in <module>()
      1 trainer = pl.Trainer()
----> 2 trainer.fit(model, train_dl, valid_dl)

16 frames

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in fit(self, model, train_dataloaders, val_dataloaders, datamodule, train_dataloader, ckpt_path)
    739             train_dataloaders = train_dataloader
    740         self._call_and_handle_interrupt(
--> 741             self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
    742         )
    743 

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _call_and_handle_interrupt(self, trainer_fn, *args, **kwargs)
    683         """
    684         try:
--> 685             return trainer_fn(*args, **kwargs)
    686         # TODO: treat KeyboardInterrupt as BaseException (delete the code below) in v1.7
    687         except KeyboardInterrupt as exception:

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _fit_impl(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)
    775         # TODO: ckpt_path only in v1.7
    776         ckpt_path = ckpt_path or self.resume_from_checkpoint
--> 777         self._run(model, ckpt_path=ckpt_path)
    778 
    779         assert self.state.stopped

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _run(self, model, ckpt_path)
   1197 
   1198         # dispatch `start_training` or `start_evaluating` or `start_predicting`
-> 1199         self._dispatch()
   1200 
   1201         # plugin will finalized fitting (e.g. ddp_spawn will load trained model)

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _dispatch(self)
   1277             self.training_type_plugin.start_predicting(self)
   1278         else:
-> 1279             self.training_type_plugin.start_training(self)
   1280 
   1281     def run_stage(self):

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py in start_training(self, trainer)
    200     def start_training(self, trainer: "pl.Trainer") -> None:
    201         # double dispatch to initiate the training loop
--> 202         self._results = trainer.run_stage()
    203 
    204     def start_evaluating(self, trainer: "pl.Trainer") -> None:

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in run_stage(self)
   1287         if self.predicting:
   1288             return self._run_predict()
-> 1289         return self._run_train()
   1290 
   1291     def _pre_training_routine(self):

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _run_train(self)
   1309             self.progress_bar_callback.disable()
   1310 
-> 1311         self._run_sanity_check(self.lightning_module)
   1312 
   1313         # enable train mode

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py in _run_sanity_check(self, ref_model)
   1373             # run eval step
   1374             with torch.no_grad():
-> 1375                 self._evaluation_loop.run()
   1376 
   1377             self.call_hook("on_sanity_check_end")

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/base.py in run(self, *args, **kwargs)
    143             try:
    144                 self.on_advance_start(*args, **kwargs)
--> 145                 self.advance(*args, **kwargs)
    146                 self.on_advance_end()
    147                 self.restarting = False

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py in advance(self, *args, **kwargs)
    108         dl_max_batches = self._max_batches[dataloader_idx]
    109 
--> 110         dl_outputs = self.epoch_loop.run(dataloader, dataloader_idx, dl_max_batches, self.num_dataloaders)
    111 
    112         # store batch level output per dataloader

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/base.py in run(self, *args, **kwargs)
    143             try:
    144                 self.on_advance_start(*args, **kwargs)
--> 145                 self.advance(*args, **kwargs)
    146                 self.on_advance_end()
    147                 self.restarting = False

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py in advance(self, data_fetcher, dataloader_idx, dl_max_batches, num_dataloaders)
    120         # lightning module methods
    121         with self.trainer.profiler.profile("evaluation_step_and_end"):
--> 122             output = self._evaluation_step(batch, batch_idx, dataloader_idx)
    123             output = self._evaluation_step_end(output)
    124 

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py in _evaluation_step(self, batch, batch_idx, dataloader_idx)
    215             self.trainer.lightning_module._current_fx_name = "validation_step"
    216             with self.trainer.profiler.profile("validation_step"):
--> 217                 output = self.trainer.accelerator.validation_step(step_kwargs)
    218 
    219         return output

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/accelerators/accelerator.py in validation_step(self, step_kwargs)
    237         """
    238         with self.precision_plugin.val_step_context():
--> 239             return self.training_type_plugin.validation_step(*step_kwargs.values())
    240 
    241     def test_step(self, step_kwargs: Dict[str, Union[Any, int]]) -> Optional[STEP_OUTPUT]:

/usr/local/lib/python3.7/dist-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py in validation_step(self, *args, **kwargs)
    217 
    218     def validation_step(self, *args, **kwargs):
--> 219         return self.model.validation_step(*args, **kwargs)
    220 
    221     def test_step(self, *args, **kwargs):

<ipython-input-12-16d602e3e66b> in validation_step(self, val_batch, batch_idx)
     29   def validation_step(self, val_batch, batch_idx):
     30     x = val_batch
---> 31     x = x.view(x.size(0), -1)
     32     z = self.encoder(x)
     33     x_hat = self.decoder(z)

AttributeError: 'list' object has no attribute 'view'

CodePudding user response:

As indicated by the error log, it is in this line:

 29   def validation_step(self, val_batch, batch_idx):
 30     x = val_batch
 31     x = x.view(x.size(0), -1)        # here is your problem

x or vali_batch is a list object, and a list does not have an attribute view() since it is not a tensor. If you want to convert a list to a tensor, you can simply use:

x = torch.tensor(val_batch)

Or you can convert val_batch to a tensor earlier in your code during loading and processing the data.

  • Related