I can't imagine how to reorder a singly linked list with decent time complexity (The library says it takes "approximately" NlogN). Is there a name for the algorithm used that I could use to find educational material about it? I looked at the code in the standard library, but I couldn't figure much out other than a merge takes place near the end of one of the few functions named sort
or sort2
. Below are some of the functions used:
template <class _Pr2>
static void _Sort(_Nodeptr _BFirst, _Pr2 _Pred) {
auto _BMid = _Sort2(_BFirst, _Pred);
size_type _Bound = 2;
do {
if (!_BMid->_Next) {
return;
}
const auto _BLast = _Sort(_BMid, _Bound, _Pred);
_BMid = _Inplace_merge(_BFirst, _BMid, _BLast, _Pred);
_Bound <<= 1;
} while (_Bound != 0);
}
template <class _Pr2>
static _Nodeptr _Sort(const _Nodeptr _BFirst, size_type _Bound, _Pr2 _Pred) {
// Sort (_BFirst, _BFirst _Bound), unless nullptr is encountered.
// Returns a pointer one before the end of the sorted region.
if (_Bound <= 2) {
return _Sort2(_BFirst, _Pred);
}
const auto _Half_bound = _Bound / 2;
const auto _BMid = _Sort(_BFirst, _Half_bound, _Pred);
if (!_BMid->_Next) {
return _BMid;
}
const auto _BLast = _Sort(_BMid, _Half_bound, _Pred);
return _Inplace_merge(_BFirst, _BMid, _BLast, _Pred);
}
template <class _Pr2>
static _Nodeptr _Inplace_merge(_Nodeptr _BFirst1, const _Nodeptr _BMid, const _Nodeptr _BLast, _Pr2 _Pred) {
// Merge the sorted ranges (_BFirst1, _BMid] and (_BMid, _BLast)
// Returns one before the new logical end of the range.
auto _First2 = _BMid->_Next;
for (;;) { // process 1 splice
_Nodeptr _First1;
for (;;) { // advance _BFirst1 over elements already in position
if (_BFirst1 == _BMid) {
return _BLast;
}
_First1 = _BFirst1->_Next;
if (_DEBUG_LT_PRED(_Pred, _First2->_Myval, _First1->_Myval)) {
// _First2->_Myval is out of order
break;
}
// _First1->_Myval is already in position; advance
_BFirst1 = _First1;
}
// find the end of the "run" of elements less than _First1->_Myval in the 2nd range
auto _BRun_end = _First2;
_Nodeptr _Run_end;
for (;;) {
_Run_end = _BRun_end->_Next;
if (_BRun_end == _BLast) {
break;
}
if (!_DEBUG_LT_PRED(_Pred, _Run_end->_Myval, _First1->_Myval)) {
// _Run_end is the first element in (_BMid->_Myval, _BLast->_Myval) that shouldn't precede
// _First1->_Myval.
// After the splice _First1->_Myval will be in position and must not be compared again.
break;
}
_BRun_end = _Run_end;
}
_BMid->_Next = _Run_end; // snip out the run from its old position
_BFirst1->_Next = _First2; // insert into new position
_BRun_end->_Next = _First1;
if (_BRun_end == _BLast) {
return _BMid;
}
_BFirst1 = _First1;
_First2 = _Run_end;
}
}
CodePudding user response:
"Bottom up" variants of merge sort can sort a linked list in O(n log n) time and O(1) space. See the Wikipedia article. If O(1) space isn't a requirement then you can construct an array of pointers into the list, sort that using any O(n log n) sorting algorithm, and then rebuild the list from your sorted copy.