Currently I am reading in a data frame with the timestamp from film 00(days):00(hours clocks over at 24 to day):00(min):00(sec)
pandas
reads time formats HH:MM:SS and YYYY:MM:DD HH:MM:SS fine.
Though is there a way of having pandas read the duration of time such as the DD:HH:MM:SS.
Alternatively using timedelta how would I go about getting the DD into HH in the data frame so that pandas can make it "1 day HH:MM:SS" for example
Data sample
00:00:00:00
00:07:33:57
02:07:02:13
00:00:13:11
00:00:10:11
00:00:00:00
00:06:20:06
01:12:13:25
Expected output for last sample
36:13:25
Thanks
CodePudding user response:
Convert days separately, add to times and last call custom function:
def f(x):
ts = x.total_seconds()
hours, remainder = divmod(ts, 3600)
minutes, seconds = divmod(remainder, 60)
return ('{}:{:02d}:{:02d}').format(int(hours), int(minutes), int(seconds))
d = pd.to_timedelta(df['col'].str[:2].astype(int), unit='d')
td = pd.to_timedelta(df['col'].str[3:])
df['col'] = d.add(td).apply(f)
print (df)
col
0 0:00:00
1 7:33:57
2 55:02:13
3 0:13:11
4 0:10:11
5 0:00:00
6 6:20:06
7 36:13:25
CodePudding user response:
If you want timedelta objects, a simple way is to replace the first colon with days
:
df['timedelta'] = pd.to_timedelta(df['col'].str.replace(':', 'days ', n=1))
output:
col timedelta
0 00:00:00:00 0 days 00:00:00
1 00:07:33:57 0 days 07:33:57
2 02:07:02:13 2 days 07:02:13
3 00:00:13:11 0 days 00:13:11
4 00:00:10:11 0 days 00:10:11
5 00:00:00:00 0 days 00:00:00
6 00:06:20:06 0 days 06:20:06
7 01:12:13:25 1 days 12:13:25
>>> df.dtypes
col object
timedelta timedelta64[ns]
dtype: object
From there it's also relatively easy to combine the days and hours as string:
c = df['timedelta'].dt.components
df['str_format'] = ((c['hours'] c['days']*24).astype(str)
df['col'].str.split('(?=:)', n=2).str[-1]).str.zfill(8)
output:
col timedelta str_format
0 00:00:00:00 0 days 00:00:00 00:00:00
1 00:07:33:57 0 days 07:33:57 07:33:57
2 02:07:02:13 2 days 07:02:13 55:02:13
3 00:00:13:11 0 days 00:13:11 00:13:11
4 00:00:10:11 0 days 00:10:11 00:10:11
5 00:00:00:00 0 days 00:00:00 00:00:00
6 00:06:20:06 0 days 06:20:06 06:20:06
7 01:12:13:25 1 days 12:13:25 36:13:25