have a list of tuples, called employee_data, where each list element is a tuple that corresponds to a class and a point that a employee can earn. For example,
employee_data = [{ "name": "asd", "lastname": "abc", "birthday": 15/15/2021, "birthplace": "CA", "live_place": "USA", "email": "sss.com", "website": "sss.com", "Phone_number": "12345678901", "work_number": "abc", "save_date": 15/15/2021, "start_date": 15/15/2021, "leave_date": 15/15/2021, "project": "End-Of-Support", "age_in_months": 256 , "Age_in_Years": 15.3, "Computer_name": 'pc1', "computer_cpu": 8, "computer_ram": 12, "computer_ssd": 256, }, { "name": "asd", "lastname": "abc", "birthday": 16/15/2021, "birthplace": "CA", "live_place": "USA", "email": "sss.com", "website": "sss.com", "Phone_number": "12345678901", "work_number": "abc", "save_date": 15/15/2021, "start_date": 15/15/2021, "leave_date": 15/15/2021, "project": "End-Of-Support", "age_in_months": 256 , "Age_in_Years": 15.3, "Computer_name": 'pc1', "computer_cpu": 8, "computer_ram": 12, "computer_ssd": 256, }]
Nested Dict ID | name | lastname | birthday | birthplace | live_place | |
---|---|---|---|---|---|---|
0 | asd | abc | 15/15/2021 | USA | CAD | [email protected] |
1 | asd2 | abc | 16/15/2021 | CAD | USA | [email protected] |
I tried this functions but couldn't fix error. Here's a link!
My issue is, this dictionary in list. I want to create nested dict for mapping datas.
[{0{"name": "asd", "lastname": "abc", "birthday": 15/15/2021, "birthplace": "CA", "live_place": "USA", "email": "sss.com",} 1{"name": "asd2", "lastname": "abc", "birthday": 16/15/2021, "birthplace": "CA", "live_place": "USA", "email": "sss.com",}]
if employee has same last name i want to get employee nestedDictID than i'll import all infomartion on different list and table ..
d = { x['lastname']: x['abc'] for x in employee_data} KeyError: 'abc'
CodePudding user response:
You can create a list of tuples with the required data extracted from json which you can use to export it to SQL tables. Refer the below code:
import pandas as pd
data = [(item.get('name'), item.get('lastname'),item.get('birthday'),item.get('birthplace'), item.get('live_place'), item.get('email')) for item in employee_data]
print(data)
df = pd.DataFrame.from_records(data, columns=['name', 'lastname', 'birthday','birthplace','live_place','email']))
And then you can use df.to_sql
from pandas.