I am working on a binary classification using random forest and trying out SHAP to explain the model predictions.
However, I would like to convert the SHAP local explanation plots with values into a pandas dataframe for each instance.
Is there any one here who can help me with exporting SHAP local explanations to pandas dataframe for each instance?
I know that SHAPASH has .to_pandas()
method but couldn't find anything like that in SHAP
I tried something like below based on the SO post here but it doesn't help
feature_names = shap_values.feature_names
shap_df = pd.DataFrame(shap_values.values, columns=feature_names)
vals = np.abs(shap_df.values).mean(0)
shap_importance = pd.DataFrame(list(zip(feature_names, vals)), columns=['col_name', 'feature_importance_vals'])
shap_importance.sort_values(by=['feature_importance_vals'], ascending=False, inplace=True)
I expect my output something like below. Here, negative sign indicates feature contribution for class 0 and positive values indicates feature contribution for class 1
subject_id Feature importance value (contribution)
1 F1 31
1 F2 27
1 F3 20
1 F5 - 10
1 F9 - 29
CodePudding user response:
If you have a model like this:
import xgboost
import shap
import warnings
warnings.filterwarnings("ignore")
# train XGBoost model
X,y = shap.datasets.boston()
model = xgboost.XGBRegressor().fit(X, y)
# explain the model's predictions using SHAP values
# (same syntax works for LightGBM, CatBoost, and scikit-learn models)
background = shap.maskers.Independent(X, max_samples=100)
explainer = shap.Explainer(model, background, algorithm="tree")
sv = explainer(X)
you can decompose your results like this:
sv.base_values[0]
22.342787810446044
sv.values[0]
array([-7.68297079e-01, -4.38205232e-02, 3.46814548e-01, -4.06731364e-03,
-3.17875379e-01, -5.37296545e-01, 2.68567768e-01, -1.30198611e 00,
-4.83524088e-01, -4.39375216e-01, 2.94188969e-01, 2.43096180e-02,
4.63890554e 00])
model.predict(X.iloc[[0]])
array([24.019339], dtype=float32)
Which is exactly equal to:
sv.base_values[0] sum(sv.values[0])
24.01933200249436
If you want to put results to Pandas df:
pd.DataFrame(sv.values[0], index = X.columns)
0
CRIM -0.768297
ZN -0.043821
INDUS 0.346815
CHAS -0.004067
NOX -0.317875
RM -0.537297
AGE 0.268568
DIS -1.301986
RAD -0.483524
TAX -0.439375
PTRATIO 0.294189
B 0.024310
LSTAT 4.638906
Alternatively, if you wish everything arranged row-wise:
pd.DataFrame(
np.c_[sv.base_values, sv.values],
columns = ["bv"] list(X.columns)
)