I am trying to visualise rain events using a data contained in a dataframe. the idea seems very simple, but the execution seems to be impossible! here is a part of the dataframe:
start_time end_time duration br_open_total
0 2022-01-01 10:00:00 2022-01-01 19:00:00 9.0 0.2540000563879943
1 2022-01-02 00:00:00 2022-01-02 10:00:00 10.0 1.0160002255520624
2 2022-01-02 17:00:00 2022-01-03 02:00:00 9.0 0.7620001691640113
3 2022-01-03 02:00:00 2022-01-04 12:00:00 34.0 10.668002368296513
4 2022-01-07 21:00:00 2022-01-08 06:00:00 9.0 0.2540000563879943
5 2022-01-16 05:00:00 2022-01-16 20:00:00 15.0 0.5080001127760454
6 2022-01-19 04:00:00 2022-01-19 17:00:00 13.0 0.7620001691640255
7 2022-01-21 14:00:00 2022-01-22 00:00:00 10.0 1.5240003383280751
8 2022-01-27 02:00:00 2022-01-27 16:00:00 14.0 3.0480006766561503
9 2022-02-01 12:00:00 2022-02-01 21:00:00 9.0 0.2540000563880126
10 2022-02-03 05:00:00 2022-02-03 15:00:00 10.0 0.5080001127760251
What I want to do is have a plot with time on the x axis, and the value of the 'br_open_total' on the y axis.
I can draw what I want it to look like, see below:
I apologise for the simplicity of the drawing, but I think it explains what I want to do. How do I do this, and then repeat for other dataframes on the same plot. I have tried staircase, matplotlib.pyplot.stair and others with no success.
It seems such a simple concept!
Edit 1:
Tried Joswin K J's answer with the actual data, and got this:
The event at 02-12 11:00 should be 112 hours duration, but the bar is the same width as all the others.
Edit2: Tried Mozway's answer and got this:
Still doesn't show width of each event, and doesn't discretise the events either
CodePudding user response:
Try this:
import matplotlib.pyplot as plt
for ind,row in df.iterrows():
plt.plot(pd.Series([row['start_time'],row['end_time']]),pd.Series([row['br_open_total'],row['br_open_total']]),color='b')
plt.plot(pd.Series([row['start_time'],row['start_time']]),pd.Series([0,row['br_open_total']]),color='b')
plt.plot(pd.Series([row['end_time'],row['end_time']]),pd.Series([0,row['br_open_total']]),color='b')
plt.xticks(rotation=90)
Result:
CodePudding user response:
reshaped data:
duration br_open_total variable date
0 9.0 0.254000 start_time 2022-01-01 10:00:00
11 9.0 0.000000 end_time 2022-01-01 19:00:00
1 10.0 1.016000 start_time 2022-01-02 00:00:00
12 10.0 0.000000 end_time 2022-01-02 10:00:00
2 9.0 0.762000 start_time 2022-01-02 17:00:00
3 34.0 10.668002 start_time 2022-01-03 02:00:00
14 34.0 0.000000 end_time 2022-01-04 12:00:00
4 9.0 0.254000 start_time 2022-01-07 21:00:00
15 9.0 0.000000 end_time 2022-01-08 06:00:00
5 15.0 0.508000 start_time 2022-01-16 05:00:00
16 15.0 0.000000 end_time 2022-01-16 20:00:00
6 13.0 0.762000 start_time 2022-01-19 04:00:00
17 13.0 0.000000 end_time 2022-01-19 17:00:00
7 10.0 1.524000 start_time 2022-01-21 14:00:00
18 10.0 0.000000 end_time 2022-01-22 00:00:00
8 14.0 3.048001 start_time 2022-01-27 02:00:00
19 14.0 0.000000 end_time 2022-01-27 16:00:00
9 9.0 0.254000 start_time 2022-02-01 12:00:00
20 9.0 0.000000 end_time 2022-02-01 21:00:00
10 10.0 0.508000 start_time 2022-02-03 05:00:00
21 10.0 0.000000 end_time 2022-02-03 15:00:00