I have finished converting an application that I made in JavaScript to Rust for increased performance. I am learning to program, and all the application does is work out the multiplicative persistence of any number in a range. It multiplies all digits together to form a new number, then repeats until the number becomes less than 10.
My issue is, my program written in JavaScript is over 5 times faster than the same in Rust. I must be doing something wrong with converting Strings to ints somewhere, I even tried swapping i128 to i64 and it made little difference.
If I run "cargo run --release" it is still slower!
Please can somebody look through my code to work out if there is any part of it that is causing the issues? Thank you in advance :)
fn multiplicative_persistence(mut user_input: i128) -> i128 {
let mut steps: i128 = 0;
let mut numbers: Vec<i128> = Vec::new();
while user_input > 10 {
let string_number: String = user_input.to_string();
let digits: Vec<&str> = string_number.split("").collect();
let mut sum: i128 = 1;
let digits_count = digits.len();
for number in 1..digits_count - 1 {
sum *= digits[number].parse::<i128>().unwrap();
}
numbers.push(sum);
steps = 1;
user_input = sum;
}
return steps;
}
fn main() {
// let _user_input: i128 = 277777788888899;
let mut highest_steps_count: i128 = 0;
let mut highest_steps_number: i128 = 0;
let start: i128 = 77551000000;
let finish: i128 = 1000000000000000;
for number in start..=finish {
// println!("{}: {}", number, multiplicative_persistence(number));
if multiplicative_persistence(number) > highest_steps_count {
highest_steps_count = multiplicative_persistence(number);
highest_steps_number = number;
}
if number % 1000000 == 0 {
println!("Upto {} so far: {}", number, highest_steps_number);
}
}
println!("Highest step count: {} at {}", highest_steps_number, highest_steps_count);
}
I do plan to use the numbers variable in the function but I have not learnt enough to know how to properly return it as an associative array.
CodePudding user response:
Maybe the issue is that converting a number to a string, and then re-converting it again into a number is not that fast, and avoidable. You don't need this intermediate step:
fn step(mut x: i128) -> i128 {
let mut result = 1;
while x > 0 {
result *= x % 10;
x /= 10;
}
result
}
fn multiplicative_persistence(mut user_input: i128) -> i128 {
let mut steps = 0;
while user_input > 10 {
user_input = step(user_input);
steps = 1;
}
steps
}