I need to populate NaN values for some columns in one dataframe based on a condition between two data frames.
DF1 has SOL (start of line) and EOL (end of line) columns and DF2 has UTC_TIME for each entry.
For every point in DF2 where the UTC_TIME is >= the SOL and is <= the EOL of each record in the DF1, that row in DF2 must be assigned the LINE, DEVICE and TAPE_FILE.
So, every one of the points will be assigned a LINE, DEVICE and TAPE_FILE based on the SOL/EOL time the UTC_TIME is between in DF1.
I'm trying to use the numpy where function for each column like this
df2['DEVICE'] = np.where(df2['UTC_TIME'] >= df1['SOL'] and <= df1['EOL'])
Or using a for loop to iterate through each row
for point in points:
if df1['SOL'] >= df2['UTC_TIME'] and df1['EOL'] <= df2['UTC_TIME']
return df1['DEVICE']
I'm new to python and clearly poor at writing syntax. If anyone can offer some guidance or help I'd greatly appreciate it.
CodePudding user response:
Try with merge_asof
:
#convert to datetime if needed
df1["SOL"] = pd.to_datetime(df1["SOL"])
df1["EOL"] = pd.to_datetime(df1["EOL"])
df2["UTC_TIME"] = pd.to_datetime(df2["UTC_TIME"])
output = pd.merge_asof(df2[["ID", "UTC_TIME"]],df1,left_on="UTC_TIME",right_on="SOL").drop(["SOL","EOL"],axis=1)
>>> output
ID UTC_TIME LINE DEVICE TAPE_FILE
0 1 2022-04-25 06:50:00 1 Huntec 10
1 2 2022-04-25 07:15:00 2 Teledyne 11
2 3 2022-04-25 10:20:00 3 Huntec 12
3 4 2022-04-25 10:30:00 3 Huntec 12
4 5 2022-04-25 10:50:00 3 Huntec 12