I have some data in the following csv format:
Variable 1 | |||
Time | Value | ||
Time1 | 12 | ||
Time2 | 32 | ||
Time3 | 4 | ||
Time4 | 5 | ||
Time5 | 34 | ||
Time6 | 5 | ||
Time7 | 46 | ||
Time8 | 7 | ||
Time9 | 8 | ||
Time10 | 543 | ||
Variable 2 | |||
Time | Value | ||
Time1 | 1 | 2 | 3 |
Time2 | 2 | 45 | 5 |
Time3 | 4 | 2 | 54 |
Time4 | 3 | 1 | 2 |
Time5 | 3 | 2 | 4 |
Time6 | 4 | 5 | 8 |
Time7 | 4 | 7 | 4 |
Time8 | 8 | 65 | 12 |
Time9 | 12 | 8 | 14 |
Time10 | 65 | 65 | 13 |
Variable 3 | |||
Time | Value | ||
Time1 | 3 | ||
Time2 | 4 | ||
Time3 | 5 | ||
Time4 | 2 | ||
Time5 | 1 | ||
Time6 | 7 | ||
Time7 | 5 | ||
Time8 | 3 | ||
Time9 | 5 | ||
Time10 | 7 | ||
And want to put it in the following data frame format with pandas:
Variable1 Variable2 Variable3
Time1 12 [1,2,3] 3
Time2 32 [2,45,5] 4
Time3 4 [4,2,54] 5
How would I even go about this? I know the format is awful, don't ask me why it's like that but I'm kinda stuck with it. I really don't even know where to begin with this one. TIA
CodePudding user response:
updated code as per comments
initial file read is based on code from here:
import pandas as pd
import numpy as np
file = r'C:\Test\TIMBER-1100-10M.csv'
# Loop the data lines
with open(file, 'r') as temp_f:
# get No of columns in each line
col_count = [ len(l.split(",")) for l in temp_f.readlines() ]
# Generate column names (names will be 0, 1, 2, ..., maximum columns - 1)
column_names = [i for i in range(0, max(col_count))]
df = pd.read_csv(file, header=None, delimiter=",", names=column_names)
# preparing dataframe for pivot
df['Variable'] = np.where(df[0].str.contains('VARIABLE:'), df[0], np.nan)
df['Variable'].ffill(inplace=True)
df[1].dropna(inplace=True)
drop_values = ['Timestamp','VARIABLE:']
df2 = df[~df[0].str.contains('|'.join(drop_values))].astype({col: str for col in df.columns[2:]})
conc_col = df2.columns.to_list()
conc_col.remove(0)
conc_col.remove('Variable')
df2['Value'] = df2[conc_col].apply(lambda x: ','.join(x.dropna()), axis=1).str.strip(',nan')
df2.rename(columns={ df.columns[0]: "Time" }, inplace = True)
# creating the pivot as final dataframe
pivot = df2.pivot_table(index=['Time'],
columns=['Variable'],
values='Value',
aggfunc='sum')\
.rename_axis(None, axis=1)\
.reset_index()
pivot.to_excel(r'C:\Test\temp1.xlsx')