I want to find the earliest date of a Vin column. By applying a filter 1 on the columns Value_1 and Value_2.The date is given in another column 'Date'
Below is my data frame.
import pandas as pd
df_merge= pd.DataFrame({'Vin': ['a123', 'a123', 'a123', 'a123', 'b123', 'b123', 'b123', 'b123'],
'Date': ["2022-03-21T15:20:07.536Z", '2022-03-21T15:20:07.510Z', '2022-03-21T15:20:07.535Z',
'2022-03-21T15:20:07.535Z','2022-03-22T09:14:59.615Z','2022-03-22T09:14:59.412Z',
'2022-03-22T09:14:59.512Z','2022-03-22T09:14:59.615Z'],
'Value_1':['1', '0', '1', '1','1', '0', '0', '1'],
'Value_2':['1', '1', '1', '0','1', '0', '1', '1']})
I have tried one method in which I have created another data frame by applying the required filter and then I used the below command to get the minimum date.
Temp_table = pd.DataFrame()
Temp_table = df_merge[(df_merge['Value_1'] == 1) & (df_merge['Value_2'] == 1)]
Temp_table['Result'] = np.where(Temp_table.groupby('Vin')['Date'].transform('min').eq(Temp_table['Date']), 'Yes','No')
After this, I merged this column with my original data frame. This creates a very big data frame which I don't want. So my question is, Is there any way to get my requirement in the same data frame, Without creating any other df.
Below is my expected data frame with the 'Result' column:-
df_merge= pd.DataFrame({'Vin': ['a123', 'a123', 'a123', 'a123', 'b123', 'b123', 'b123', 'b123'],
'Date': ["2022-03-21T15:20:07.536Z", '2022-03-21T15:20:07.510Z', '2022-03-21T15:20:07.535Z',
'2022-03-21T15:20:07.535Z','2022-03-22T09:14:59.615Z','2022-03-22T09:14:59.412Z',
'2022-03-22T09:14:59.512Z','2022-03-22T09:14:59.615Z'],
'Value_1':['1', '0', '1', '1','1', '0', '0', '1'],
'Value_2':['1', '1', '1', '0','1', '0', '1', '1'],
'Result':['No', 'No', 'Yes', 'No','Yes', 'No', 'No', 'Yes']})
df_merge
CodePudding user response:
You can use:
Update
idx = (df_merge.assign(Date=pd.to_datetime(df_merge['Date']))
.loc[df_merge['Value_1'].eq('1') & df_merge['Value_2'].eq('1')]
.groupby('Vin')['Date'].rank(method='min')
.loc[lambda x: x == 1].index)
df_merge['Result'] = np.where(df_merge.index.isin(idx), 'Yes', 'No')
Old answer
idx = (df_merge.assign(Date=pd.to_datetime(df_merge['Date']))
.loc[df_merge['Value_1'].eq(1) & df_merge['Value_2'].eq(1)]
.groupby('Vin')['Date'].idxmin())
df_merge['Result'] = np.where(df_merge.index.isin(idx), 'Yes', 'No')
Output:
>>> idx
Vin
a123 2
b123 7
Name: Date, dtype: int64
>>> df_merge
Vin Date Value_1 Value_2 Result
0 a123 2022-03-21T15:20:07.536Z 1 1 No
1 a123 2022-03-21T15:20:07.510Z 0 1 No
2 a123 2022-03-21T15:20:07.535Z 1 1 Yes
3 a123 2022-03-21T15:20:07.535Z 1 0 No
4 b123 2022-03-22T09:14:59.616Z 1 1 No
5 b123 2022-03-22T09:14:59.412Z 0 0 No
6 b123 2022-03-22T09:14:59.512Z 0 1 No
7 b123 2022-03-22T09:14:59.615Z 1 1 Yes
Note: If Date
is already DatetimeIndex
, you can safely remove the assign
method.