I have a spark dataframe with one column having multiple dictionaries:
id | result |
---|---|
1 | {'key1':'a', 'key2':'b'}, {'key1':'d', 'key2':'e'}, {'key1':'m', 'key2':'n'} |
2 | {'key1':'r', 'key2':'s'}, {'key1':'t', 'key2':'u'} |
I need the final output as:
id | key1 | key2 |
---|---|---|
1 | a | b |
1 | d | e |
1 | m | n |
2 | r | s |
2 | t | u |
And planning to explode this twice to get the results.
Although, The column result
is of StringType()
and therefore I am unable to explode it using the explode
function:
df.withColumn("output", explode(col("result")))
Error:
AnalysisException: cannot resolve 'explode(
result
)' due to data type mismatch: input to function explode should be array or map type, not string; 'Project [result#9651, explode(result#9651) AS output#9660] - Relation[result#9651] json
Please help on how to resolve this.
CodePudding user response:
First convert the result
column to an array of struct structure using the from_json
function, and then expand it using the inline
function.
json_schema = """
array<struct<key1:string,key2:string>>
"""
df = df.withColumn('result', F.from_json(F.concat(F.lit('['), 'result', F.lit(']')), json_schema)) \
.selectExpr('id', 'inline(result)')
df.show(truncate=False)