Example dataset...
> tribble(
~colA, ~colB, ~colC, ~colD, ~colE,
1, 2, 3, 4, 5,
2, 3, NA, 4, 5,
3, NA, NA, NA, 4,
4, NA, NA, 5, 6
)
# A tibble: 4 × 5
colA colB colC colD colE
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2 3 4 5
2 2 3 NA 4 5
3 3 NA NA NA 4
4 4 NA NA 5 6
How can I create a new column giving the mean of columns B, C, D and E if only two (at most) NAs are present? In this case, the third row mean should be NA as it has 3 NAs. I have put colA because I want to be able to use tidyselect to choose which variables are included.
So far I have this...
dat %>%
rowwise() %>%
mutate(
mean = if_else(
c_across(colB, colC, colD, colE),
condition = sum(is.na(.)) <= 2,
true = mean(., na.rm = T),
false = NA
)
)
But I get this error message...
Error in `mutate()`:
! Problem while computing `mean = if_else(...)`.
ℹ The error occurred in row 1.
Caused by error in `if_else()`:
! `false` must be a double vector, not a logical vector.
Run `rlang::last_error()` to see where the error occurred.
Warning message:
Problem while computing `mean = if_else(...)`.
ℹ argument is not numeric or logical: returning NA
ℹ The warning occurred in row 1.
In an ideal world, I would have a function for taking the rowwise mean for a set of columns and a given number of allowed NAs that I could repurpose.
CodePudding user response:
We can use across
to select column of interest.
library(dplyr)
dat %>%
mutate(mean = ifelse(rowSums(is.na(across(-colA))) > 2,
NA,
rowMeans(across(-colA), na.rm = T)))
# A tibble: 4 × 6
colA colB colC colD colE mean
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2 3 4 5 3.5
2 2 3 NA 4 5 4
3 3 NA NA NA 4 NA
4 4 NA NA 5 6 5.5
CodePudding user response:
In base R
:
df$mean <- apply(df[-1], 1, \(x) if (sum(is.na(x)) <= 2) mean(x, na.rm = T) else NA)
df
#> # A tibble: 4 x 6
#> colA colB colC colD colE mean
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 3 4 5 3.5
#> 2 2 3 NA 4 5 4
#> 3 3 NA NA NA 4 NA
#> 4 4 NA NA 5 6 5.5
Or using dplyr
:
library(dplyr)
df %>%
mutate(mean = apply(.[-1], 1, \(x) if (sum(is.na(x)) <= 2) mean(x, na.rm = T) else NA))
#> # A tibble: 4 x 6
#> colA colB colC colD colE mean
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 3 4 5 3.5
#> 2 2 3 NA 4 5 4
#> 3 3 NA NA NA 4 NA
#> 4 4 NA NA 5 6 5.5
CodePudding user response:
We can do the following. This is an example how to select a set of columns with select
in rowSums
and rowMeans
.
library(dplyr)
dat2 <- dat %>%
mutate(mean = ifelse(rowSums(is.na(select(., -colA))) > 2,
NA,
rowMeans(select(., -colA), na.rm = TRUE)))
CodePudding user response:
data.table
option:
library(data.table)
setDT(df)[!rowSums(is.na(df)) > 2, mean := rowMeans(.SD, na.rm = TRUE), .SDcols = -1]
Output:
colA colB colC colD colE mean
1: 1 2 3 4 5 3.5
2: 2 3 NA 4 5 4.0
3: 3 NA NA NA 4 NA
4: 4 NA NA 5 6 5.5