I have to support the ability for user to run any formula against a frame to produce a new column.
I may have a frame that looks like
dim01 dim02 msr01
0 A 25 1.0
1 B 26 5.3
2 C 53 NaN
I interpret user code to allow them to run a formula using supported functions/ standard operators / other columns
So a formula might look like SQRT([msr01]*100 7)
I convert the user input to Python syntax so this would evaluate to something like
formula_str = '(math.sqrt((row.msr01*100) 7))'
I then apply it to my pandas dataframe like this
data_frame['msr002'] = data_frame.apply(lambda row: eval(formula_str), axis=1)
This was working good until I hit data with a NaN in a column used in the calculation. I noticed that when this case happens I get a frame like this in return.
dim01 dim02 msr01 msr02
0 A 25 1.0 10.344
1 B 26 5.3 23.173
2 C 53 NaN 7.342
So it appears that the eval is not evaluating the NaN correctly.
I am using a lexer/parser to ensure that the user sent formula isnt dangerous and to convert from everyday user syntax to use python functions and make it work against pandas columns. Any advice on how to fix this?
Perhaps I should include something in the lambda that looks if any required column is NaN and just hardcode to Nan in that case? But that doesn't seem like the best solution to me.
I did see this question which is similar but didnt think it answered my exact need.
CodePudding user response:
So you can try with
df.msr01.mul(100).add(7)**0.5
Out[716]:
0 10.34408
1 23.17326
2 NaN
Name: msr01, dtype: float64
Also with your original code
df.apply(lambda row: eval(formula_str), axis=1)
Out[714]:
0 10.34408
1 23.17326
2 NaN
dtype: float64