I have below data frame as df1:
Date id Age B R S
1 00/01/16 223 55 7.9 5.65 138
2 00/01/16 223 55 NA NA NA
3 00/01/16 223 55 NA NA NA
4 00/01/17 223 55 NA NA NA
5 00/01/17 223 55 9.6 5.71 135
6 00/01/17 223 55 NA NA NA
7 00/01/18 223 55 NA NA NA
8 00/01/18 223 55 NA NA NA
9 00/01/18 223 55 11.5 6.11 135
10 00/01/17 223 55 NA NA NA
11 00/01/05 102 60 NA NA 135
12 00/01/05 102 60 19.7 5.5 NA
13 00/01/05 102 60 NA NA NA
14 00/01/05 102 60 NA NA NA
15 00/01/06 102 60 18.5 5.34 144
16 00/01/06 102 60 NA NA NA
17 00/01/06 102 60 NA NA NA
First I need to merge rows based on "id" and then merge rows based on "Date".My problem is not omited raws with NA.for example, in raws No. 11 and 12, I have to select between 135 and 143 for "S" column. Finally, my out put should be as below data frame (df2):
Date id Age B R S
1 00/01/16 223 55 7.9 5.65 138
2 00/01/17 223 55 9.6 5.71 135
3 00/01/18 223 55 11.5 6.11 135
4 00/01/05 102 60 19.7 5.5 135
5 00/01/06 102 60 18.5 5.34 144
I wrote below code:
df2 <- df1 %>%
group_by(Date,id) %>%
summarise_all(funs(na.omit))
but I got the below error:
Error: Problem with `summarise()` column `S`.
i `S = na.omit(S)`.
x `S` must be size 6 or 1, not 0.
i An earlier column had size 6.
i The error occurred in group 1: Request_Date = "00/01/05", Patient.Code = 223
I appreciate it if anybody shares his/her comment with me.
Bests Regards
CodePudding user response:
Seems that you're only deleting rows with NAs:
df1 |> complete.cases()
CodePudding user response:
Turning data into a long format, and then back to wide should do something similar, I think. Try this:
library(tidyr)
df2 = df %>%
pivot_longer(cols = c(B, R, S)) %>%
filter(is.na(value) == FALSE) %>%
pivot_wider(names_from = name, values_from = value)