Home > Enterprise >  Dataframe to dictionary without loosing decimal digits after comma
Dataframe to dictionary without loosing decimal digits after comma

Time:06-10

I try to get a dictionary with values with two digits after comma mainly for 0.0 as 0.00. Any suggestion how I could get that? I tried to iterate throw the dictionary and replace 0.0 for 0.00 but I couldn't solve it

import pandas as pd
from tkinter import *


def create():
    data = {'1': [0.99999, 0.00000, 1.22222, 0.000000], '2': [0.99999, 0.00000, 1.22222, 0.000000]}
    df = pd.DataFrame(data)
    df2 = df.round(decimals = 2)
    print(df2)
    my_dictionary = df2.to_dict()
    print(my_dictionary)


window = Tk()
window.geometry("200x200")
button = Button(text="Convert",command=create)
button.pack()
window.mainloop()

Outputs

df2:

      1     2
0  1.00  1.00
1  0.00  0.00
2  1.22  1.22
3  0.00  0.00

my_dictionary:

{'1': {0: 1.0, 1: 0.0, 2: 1.22, 3: 0.0}, '2': {0: 1.0, 1: 0.0, 2: 1.22, 3: 0.0}}

I would like to have:

{'1': {0: 1.0, 1: 0.00, 2: 1.22, 3: 0.00}, '2': {0: 1.0, 1: 0.00, 2: 1.22, 3: 0.00}}

CodePudding user response:

Could you try this please?

data = {'A':[0.99999, 0.00000, 1.22222, 0.000000], 'B':[0.99999, 0.00000, 1.22222, 0.000000]}
df = pd.DataFrame(data)

print(df.dtypes)

df.A = df.A.apply(lambda x : '{:.3f}'.format(x))
df.B = df.B.apply(lambda x : '{:.3f}'.format(x))

df1 = df.to_dict()
df1

Output:

A    float64
B    float64
dtype: object
{'A': {0: '1.000', 1: '0.000', 2: '1.222', 3: '0.000'},
 'B': {0: '1.000', 1: '0.000', 2: '1.222', 3: '0.000'}}

Screenshot of my Google Colab:

enter image description here

  • Related