What is the fastest way to do an element-wise multiplication between a tensor and an array in Tensorflow 2?
For example, if the tensor T
(of type tf.Tensor) is:
[[0, 1],
[2, 3]]
and we have an array a
(of type np.array):
[0, 1, 2]
I wand to have:
[[[0, 0],
[0, 0]],
[[0, 1],
[2, 3]],
[[0, 2],
[4, 6]]]
as output.
CodePudding user response:
In tensorflow, we have tf.tensordot
and can use this like below:
>>> a = tf.reshape(tf.range(4), (2,2))
>>> b = tf.range(3)
>>> tf.tensordot(b,a, axes=0)
<tf.Tensor: shape=(3, 2, 2), dtype=int32, numpy=
array([[[0, 0],
[0, 0]],
[[0, 1],
[2, 3]],
[[0, 2],
[4, 6]]], dtype=int32)>
CodePudding user response:
You can traverse the array and perform a scalar multiplication with the tensor values:
import tensorflow as tf
t = tf.constant([[0, 1],[2, 3]])
a = [0, 1, 2]
u = []
for i in a:
u.append(t.numpy()*i)
u = tf.constant(u)
print(u)
Output:
tf.Tensor(
[[[0 0]
[0 0]]
[[0 1]
[2 3]]
[[0 2]
[4 6]]], shape=(3, 2, 2), dtype=int32)
Also, you can use list comprehension as follows to get a more readable
code:
import tensorflow as tf
t = tf.constant([[0, 1],[2, 3]])
a = [0, 1, 2]
u = tf.constant([t.numpy()*i for i in a])
print(u)
CodePudding user response:
What you describe is the outer product of two tensors. This can be expressed simply using Tensorflow's broadcasting rules.
import numpy as np
import tensorflow as tf
t = tf.constant([[0, 1],[2, 3]])
a = np.array([0, 1, 2])
# (2,2) x (3,1,1) produces the desired shape of (3,2,2)
result = t * a.reshape((-1, 1, 1))
# Alternatively: result = t * a[:, np.newaxis, np.newaxis]
print(result)
results in
<tf.Tensor: shape=(3, 2, 2), dtype=int32, numpy=
array([[[0, 0],
[0, 0]],
[[0, 1],
[2, 3]],
[[0, 2],
[4, 6]]], dtype=int32)>