[![enter image description here][1]][1]
[![enter image description here][2]][2]
This is my current Dataframe: [1]: https://i.stack.imgur.com/xn6N1.png
This is my expected Output: [2]: https://i.stack.imgur.com/1tMX5.png
CodePudding user response:
import pandas as pd
import numpy as np
new_data = {
"Name": [],
"Code": []
}
for index, row in df.iterrows():
name = row["Name"]
code = row["Code"]
new_data["Name"].append(name)
if(row["Code"] is np.nan):
new_data["Code"].append(f"{name}_Deault")
else:
new_data["Code"].append(code)
new_df = pd.DataFrame(new_data)
That may work for your case.