Let's consider two pandas dataframes:
import numpy as np
import pandas as pd
df = pd.DataFrame([1, 2, 3, 2, 5, 4, 3, 6, 7])
check_df = pd.DataFrame([3, 2, 5, 4, 3, 6, 4, 2, 1])
If want to do the following thing:
- If
df[1] > check_df[1]
ordf[2] > check_df[1]
ordf[3] > check_df[1]
then we assign to df 1, and 0 otherwise - If
df[2] > check_df[2]
ordf[3] > check_df[2]
ordf[4] > check_df[2]
then we assign to df 1, and 0 otherwise - We apply the same algorithm to end of DataFrame
My primitive code is the following:
df_copy = df.copy()
for i in range(len(df) - 3):
moving_df = df.iloc[i:i 3]
if (moving_df >check_df.iloc[i]).any()[0]:
df_copy.iloc[i] = 1
else:
df_copy.iloc[i] = -1
df_copy
0
0 -1
1 1
2 -1
3 1
4 1
5 -1
6 3
7 6
8 7
Could you please give me a advice, if there is any possibility to do this without loop?
CodePudding user response:
IIUC, this is easily done with a rolling.min
:
df['out'] = np.where(df[0].rolling(N, min_periods=1).max().shift(1-N).gt(check_df[0]),
1, -1)
output:
0 out
0 1 -1
1 2 1
2 3 -1
3 2 1
4 5 1
5 4 -1
6 3 1
7 6 -1
8 7 -1
to keep the last items as is:
m = df[0].rolling(N).max().shift(1-N)
df['out'] = np.where(m.gt(check_df[0]),
1, -1)
df['out'] = df['out'].mask(m.isna(), df[0])
output:
0 out
0 1 -1
1 2 1
2 3 -1
3 2 1
4 5 1
5 4 -1
6 3 1
7 6 6
8 7 7
CodePudding user response:
Although @mozway has already provided a very smart solution, I would like to share my approach as well, which was inspired by this post.
You could create your own object that compares a series with a rolling series. The comparison could be performed by typical operators, i.e. >, < or ==
. If at least one comparison holds, the object would return a pre-defined value (given in list returns_tf
, where the first element would be returned if the comparison is true, and the second if it's false).
Possible Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([1, 2, 3, 2, 5, 4, 3, 6, 7])
check_df = pd.DataFrame([3, 2, 5, 4, 3, 6, 4, 2, 1])
class Rolling_Comparison:
def __init__(self, comparing_series: pd.Series, rolling_series: pd.Series, window: int):
self.comparing_series = comparing_series.values[:-1*window]
self.rolling_series = rolling_series.values
self.window = window
def rolling_window_mask(self, option: str = "smaller"):
shape = self.rolling_series.shape[:-1] (self.rolling_series.shape[-1] - self.window 1, self.window)
strides = self.rolling_series.strides (self.rolling_series.strides[-1],)
rolling_window = np.lib.stride_tricks.as_strided(self.rolling_series, shape=shape, strides=strides)[:-1]
rolling_window_mask = (
self.comparing_series.reshape(-1, 1) < rolling_window if option=="smaller" else (
self.comparing_series.reshape(-1, 1) > rolling_window if option=="greater" else self.comparing_series.reshape(-1, 1) == rolling_window
)
)
return rolling_window_mask.any(axis=1)
def assign(self, option: str = "rolling", returns_tf: list = [1, -1]):
mask = self.rolling_window_mask(option)
return np.concatenate((np.where(mask, returns_tf[0], returns_tf[1]), self.rolling_series[-1*self.window:]))
The assignments can be achieved as follows:
roller = Rolling_Comparison(check_df[0], df[0], 3)
check_df["rolling_smaller_checking"] = roller.assign(option="smaller")
check_df["rolling_greater_checking"] = roller.assign(option="greater")
check_df["rolling_equals_checking"] = roller.assign(option="equal")
Output (the column rolling_smaller_checking
equals your desired output):
0 rolling_smaller_checking rolling_greater_checking rolling_equals_checking
0 3 -1 1 1
1 2 1 -1 1
2 5 -1 1 1
3 4 1 1 1
4 3 1 -1 1
5 6 -1 1 1
6 4 3 3 3
7 2 6 6 6
8 1 7 7 7