How would I figure out how many prediction values are greater than 77.36?
formula prediction density score index
0 CaSe2O7 138.789612 9.307914 25.664856 100354
1 YCu8 138.487381 3.889000 25.366763 643729
2 YCd8 136.493805 16.628878 24.559599 642274
3 Ba(ClO4)2 124.093674 1.649017 23.623096 28827
4 BaCa2Cu3O5 120.059601 9.005068 21.755612 40058
... ... ... ... ... ...
694393 Ba2Y(CuO2)4 80.074173 2792.744442 -185.443640 32520
694394 Ba(CoAs)2 1.535048 3439.187195 -199.425291 28829
694395 Ba2YMn3O7 78.063133 3709.714216 -203.883311 32592
694396 Ba2Pr(CuO2)4 26.273754 3266.852940 -209.020531 31612
694397 LiLa14(Cu3O14)2 24.059904 10000.958722 -630.506687 350264
694398 rows × 5 columns
I know you would want the sum where df['prediction'] > 77.36
CodePudding user response:
Sum the boolean mask:
(df['prediction'] > 77.36).sum()
CodePudding user response:
If You want to get all the value greater than 77.36 (Filtering DataFrame)
df[df['prediction'] > 77.36]
If you want to find total number of value greater than 77.36 the you can use
(df['prediction'] > 77.36]).sum()