Below is the dataframe
Employee_id REGIONAL_GROUPING
0 5035496 WEST I
1 5035496 WEST I
2 5035496 TN II
My expected output is below
Employee_id max_REGIONAL_GROUPING min_REGIONAL_GROUPING
0 5035496 WEST I TN II
I'm trying to groupby on Employee_id and trying to get max and min of REGIONAL_GROUPING. Below is the code i've written
df.groupby('Employee_id').agg({'REGIONAL_GROUPING': ['min', 'max']})
It's returning an error like below
File ~\Miniconda3\lib\site-packages\pandas\core\nanops.py:1043, in _nanminmax.<locals>.reduction(values, axis, skipna, mask)
1041 result = np.nan
1042 else:
-> 1043 result = getattr(values, meth)(axis)
1045 result = _maybe_null_out(result, axis, mask, values.shape)
1046 return result
File ~\Miniconda3\lib\site-packages\numpy\core\_methods.py:44, in _amin(a, axis, out, keepdims, initial, where)
42 def _amin(a, axis=None, out=None, keepdims=False,
43 initial=_NoValue, where=True):
---> 44 return umr_minimum(a, axis, None, out, keepdims, initial, where)
TypeError: '<=' not supported between instances of 'str' and 'float'
CodePudding user response:
It is working for me - pandas version - 1.4.2
df.groupby(df.Employee_id).agg({"REGIONAL_GROUPING": ["min", "max"]})
result