I have data of sales by year and model, which is visualized via
If we turn the hover to the second mode, it traces everything together but model: F is accidentally shown on the chart for no reason:
Code:
df <- data.frame (model = c("A","B","C","D","E","F","G","H","I","J","A","B","C","D","E","F","G","H","I","J","A","B","C","D","E","F","G","H","I","J","A","B","C","D","E","F","G","H","I","J","A","B","C","D","E","F","G","H","I","J","A","B","C","D","E","F","G","H","I","J"),
Year = c(2015,2015,2015,2015,2015,2015,2015,2015,2015,2015,2016,2016,2016,2016,2016,2016,2016,2016,2016,2016,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2018,2018,2018,2018,2018,2018,2018,2018,2018,2018,2019,2019,2019,2019,2019,2019,2019,2019,2019,2019,2020,2020,2020,2020,2020,2020,2020,2020,2020,2020),
sales = c(450,678,456,344,984,456,234,244,655,789,234,567,234,567,232,900,1005,1900,450,345,567,235,456,345,144,333,555,777,111,444,222,223,445,776,331,788,980,1003,456,434,345,2222,3456,456,678,8911,4560,4567,4566,5555,6666,7777,8888,1233,1255,5677,3411,2344,6122,4533))
##################################################################################################
library(ggsankey)
library(tidyverse)
library(plotly)
# df from the question is unchanged
# visualize the original
(plot <- ggplot(df,
aes(Year, node = model, fill = model, value = sales))
geom_sankey_bump(space = 0, type = "alluvial",
color = "transparent", smooth = 15)
scale_fill_viridis_d(option = "A", alpha = .8)
theme_sankey_bump(base_size = 16))
ggplotly(plot) -> plp
plp
#-------- colors --------
# collect the 10 colors
cols <- map_dfr(1:10, function(k){
nm <- plp$x$data[[k]]$name
filler <- plp$x$data[[k]]$fillcolor
c(nm = nm, filler = filler)
})
##################################################################################################
#--------------- collect values for hovertext positions ----------
x <- plp$x$data[[1]]$x
inds <- which(x %in% 2015:2020, arr.ind = T)
yrs <- x[inds]
tellMe <- invisible(
map(1:length(plp$x$data),
function(m) {
y <- plp$x$data[[m]]$y
y[inds]
}) %>% setNames(sort(unique(df$model))) %>% # changed from LETTERS[1:10]
as.data.frame() %>%
mutate(yr = yrs %>% as.integer()) %>%
pivot_longer(names_to = "model", values_to = "sales",
cols = sort(unique(df$model))) %>%
distinct() %>%
group_by(yr, model) %>%
summarise(val = mean(sales)) %>%
left_join(df, by = c("yr" = "Year", "model" = "model")) %>%
as.data.frame() # drop groups
)
#-------------- create data trace for hovertext --------------
plot_ly(tellMe, x = ~yr, y = ~val, split = ~model,
customdata = ~sales, text = ~model,
line = list(width = .01, shape = "spline", smoothing = 1.3),
hovertemplate = "Year: %{x}<br>Model: %{text}<br>Sales: %{customdata}<extra></extra>",
type = "scatter", mode = "lines", showlegend = F) -> pp2
pp2
##################################################################################################
# change colors to match sankey
pp2 <- plotly_build(pp2)
invisible(
map(1:10,
function(z) {
nm <- pp2$x$data[[z]]$name
# collect and assign the color
cr <- unlist(cols[cols$nm == nm, "filler"], use.names = F)
pp2$x$data[[z]]$line$color <<- cr
})
)
#################################################################################################################################
#-------------- consolidate the traces (subplot won't work) -----------
# collect data one more time!
dx <- plp$x$data
yx <- pp2$x$data
yx <- append(yx, dx) # put plt on top
# replace data
plp$x$data <- yx
# lines are small, increase the distance searched for matches
plp %>% layout(hoverdistance = 40)
CodePudding user response:
Right before you call the plot, you could use this to remove the hover data that only includes "Model ..."
It seems that if you do it and then do a bunch of manipulation, you get some odd results, like Plotly re-adding this information. So this has to be done towards the end.
invisible(map(
1:length(plp$x$data),
function(k){
x <- length(plp$x$data[[k]]$x)
if(x > 3000) {
plp$x$data[[k]]$text <<- NULL
plp$x$data[[k]]$hoverinfo <<- "none"
}
}
))
Without the other label, you could improve the hover response with a larger increase in hoverdistance
.
plp %>% layout(hoverdistance = 80)