This is a bit tricky to put into words, but I'll give it a try. I have a dataframe with duplicated indices as provided below.
a = [0.00000, 0.071928, 1.294, 2.592563, 0.000318, 2.575291, 0.439986, 2.232147, 6.091523, 2.075441, 0.96152]
b = [0.00000, 0.399791, 1.302446, 1.388957, 1.276451, 1.527568, 1.614107, 2.686325, 4.167600, 6.135689, 5.945807]
df = pd.DataFrame({'a' : a, 'b' : b})
df.index = [1,1,1,1,1,2,2,3,3,3,4]
I want the row of the first duplicated index for every number to be appended to df1, and the row of the second duplicated index to be appended to df2, etc; the first time indices 1, 2, 3, 4... n have a duplicate, those rows get appended to dataframe 1. The second time indices 1, 2, 3, 4...n have a duplicate, those rows get appended to dataframe 2, and so on. Ideally, it would look something like this if concatenated for the first three duplicates under the 'index' column:
Any idea how to go about this? I've tried to run df[df.duplicated(subset = ['index'])] in a for loop to widdle down the df to the very first duplicates, but it doesn't seem to work the way I think it will.
CodePudding user response:
Slicing out the duplicate indices via cumcount
and using concat
to stitch together the resulting sub-dataframes will do the job.
cols = df.columns
df['id'] = df.index
pd.concat([df[df.groupby('id').cumcount()==i][cols] for i in range(0, max(df.groupby('id').cumcount().values))], axis=1)